Home
Class 12
PHYSICS
Pressure of 1 mole ideal is given by P...

Pressure of `1` mole ideal is given by
`P=P_(0)[1-(1)/(2)(V_(0)/(V))^(2)]` ,brgt If volume of gas change from `V_(0)` to `2 V_(0)`. Find change in temperature.

A

`(5P_(0)V_(0))/(4R)`

B

`(P_(0)V)/(4R)`

C

`(3P_(0)V)/(4R)`

D

`(P_(0)V)/(2R)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the change in temperature of 1 mole of an ideal gas when its volume changes from \( V_0 \) to \( 2V_0 \). The pressure of the gas is given by: \[ P = P_0 \left( 1 - \frac{1}{2} \left( \frac{V_0}{V} \right)^2 \right) \] ### Step 1: Use the Ideal Gas Law We start with the ideal gas equation: \[ PV = nRT \] For 1 mole of gas, \( n = 1 \). Thus, we can write: \[ P = \frac{RT}{V} \] ### Step 2: Substitute Pressure in Terms of Temperature We can substitute the expression for pressure \( P \) from the given equation into the ideal gas law: \[ \frac{RT}{V} = P_0 \left( 1 - \frac{1}{2} \left( \frac{V_0}{V} \right)^2 \right) \] ### Step 3: Rearranging the Equation Now, we can rearrange this equation to express \( T \) in terms of \( V \): \[ RT = P_0 V \left( 1 - \frac{1}{2} \left( \frac{V_0}{V} \right)^2 \right) \] Dividing both sides by \( R \): \[ T = \frac{P_0 V}{R} \left( 1 - \frac{1}{2} \left( \frac{V_0}{V} \right)^2 \right) \] ### Step 4: Calculate Temperature at Initial Volume \( V_0 \) Now, we calculate the temperature \( T_1 \) when \( V = V_0 \): \[ T_1 = \frac{P_0 V_0}{R} \left( 1 - \frac{1}{2} \left( \frac{V_0}{V_0} \right)^2 \right) \] This simplifies to: \[ T_1 = \frac{P_0 V_0}{R} \left( 1 - \frac{1}{2} \right) = \frac{P_0 V_0}{R} \cdot \frac{1}{2} = \frac{P_0 V_0}{2R} \] ### Step 5: Calculate Temperature at Final Volume \( 2V_0 \) Next, we calculate the temperature \( T_2 \) when \( V = 2V_0 \): \[ T_2 = \frac{P_0 (2V_0)}{R} \left( 1 - \frac{1}{2} \left( \frac{V_0}{2V_0} \right)^2 \right) \] This simplifies to: \[ T_2 = \frac{P_0 (2V_0)}{R} \left( 1 - \frac{1}{2} \cdot \frac{1}{4} \right) = \frac{P_0 (2V_0)}{R} \left( 1 - \frac{1}{8} \right) = \frac{P_0 (2V_0)}{R} \cdot \frac{7}{8} \] Thus, \[ T_2 = \frac{7P_0 V_0}{4R} \] ### Step 6: Find the Change in Temperature Now, we find the change in temperature \( \Delta T \): \[ \Delta T = T_2 - T_1 = \frac{7P_0 V_0}{4R} - \frac{P_0 V_0}{2R} \] To combine these fractions, we convert \( \frac{P_0 V_0}{2R} \) to have a common denominator: \[ \Delta T = \frac{7P_0 V_0}{4R} - \frac{2P_0 V_0}{4R} = \frac{(7 - 2)P_0 V_0}{4R} = \frac{5P_0 V_0}{4R} \] ### Final Answer Thus, the change in temperature is: \[ \Delta T = \frac{5P_0 V_0}{4R} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise Chemistry|1 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|452 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise PHYSICS|250 Videos