Pressure of `1` mole ideal is given by `P=P_(0)[1-(1)/(2)(V_(0)/(V))^(2)]` ,brgt If volume of gas change from `V_(0)` to `2 V_(0)`. Find change in temperature.
A
`(5P_(0)V_(0))/(4R)`
B
`(P_(0)V)/(4R)`
C
`(3P_(0)V)/(4R)`
D
`(P_(0)V)/(2R)`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we need to find the change in temperature of 1 mole of an ideal gas when its volume changes from \( V_0 \) to \( 2V_0 \). The pressure of the gas is given by:
\[
P = P_0 \left( 1 - \frac{1}{2} \left( \frac{V_0}{V} \right)^2 \right)
\]
### Step 1: Use the Ideal Gas Law
We start with the ideal gas equation:
\[
PV = nRT
\]
For 1 mole of gas, \( n = 1 \). Thus, we can write:
\[
P = \frac{RT}{V}
\]
### Step 2: Substitute Pressure in Terms of Temperature
We can substitute the expression for pressure \( P \) from the given equation into the ideal gas law:
\[
\frac{RT}{V} = P_0 \left( 1 - \frac{1}{2} \left( \frac{V_0}{V} \right)^2 \right)
\]
### Step 3: Rearranging the Equation
Now, we can rearrange this equation to express \( T \) in terms of \( V \):
\[
RT = P_0 V \left( 1 - \frac{1}{2} \left( \frac{V_0}{V} \right)^2 \right)
\]
Dividing both sides by \( R \):
\[
T = \frac{P_0 V}{R} \left( 1 - \frac{1}{2} \left( \frac{V_0}{V} \right)^2 \right)
\]
### Step 4: Calculate Temperature at Initial Volume \( V_0 \)
Now, we calculate the temperature \( T_1 \) when \( V = V_0 \):
\[
T_1 = \frac{P_0 V_0}{R} \left( 1 - \frac{1}{2} \left( \frac{V_0}{V_0} \right)^2 \right)
\]
This simplifies to:
\[
T_1 = \frac{P_0 V_0}{R} \left( 1 - \frac{1}{2} \right) = \frac{P_0 V_0}{R} \cdot \frac{1}{2} = \frac{P_0 V_0}{2R}
\]
### Step 5: Calculate Temperature at Final Volume \( 2V_0 \)
Next, we calculate the temperature \( T_2 \) when \( V = 2V_0 \):
\[
T_2 = \frac{P_0 (2V_0)}{R} \left( 1 - \frac{1}{2} \left( \frac{V_0}{2V_0} \right)^2 \right)
\]
This simplifies to:
\[
T_2 = \frac{P_0 (2V_0)}{R} \left( 1 - \frac{1}{2} \cdot \frac{1}{4} \right) = \frac{P_0 (2V_0)}{R} \left( 1 - \frac{1}{8} \right) = \frac{P_0 (2V_0)}{R} \cdot \frac{7}{8}
\]
Thus,
\[
T_2 = \frac{7P_0 V_0}{4R}
\]
### Step 6: Find the Change in Temperature
Now, we find the change in temperature \( \Delta T \):
\[
\Delta T = T_2 - T_1 = \frac{7P_0 V_0}{4R} - \frac{P_0 V_0}{2R}
\]
To combine these fractions, we convert \( \frac{P_0 V_0}{2R} \) to have a common denominator:
\[
\Delta T = \frac{7P_0 V_0}{4R} - \frac{2P_0 V_0}{4R} = \frac{(7 - 2)P_0 V_0}{4R} = \frac{5P_0 V_0}{4R}
\]
### Final Answer
Thus, the change in temperature is:
\[
\Delta T = \frac{5P_0 V_0}{4R}
\]
Topper's Solved these Questions
JEE MAINS
JEE MAINS PREVIOUS YEAR ENGLISH|Exercise Chemistry|1 Videos
JEE MAIN
JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|452 Videos
JEE MAINS 2020
JEE MAINS PREVIOUS YEAR ENGLISH|Exercise PHYSICS|250 Videos
JEE MAINS PREVIOUS YEAR ENGLISH-JEE MAINS-Chemistry