Home
Class 12
MATHS
lim(x->0)(x+2sinx)/(sqrt(x^2+2sinx+1)-sq...

`lim_(x->0)(x+2sinx)/(sqrt(x^2+2sinx+1)-sqrt(sin^2x-x+1))`

A

2

B

1

C

6

D

-2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{x + 2\sin x}{\sqrt{x^2 + 2\sin x + 1} - \sqrt{\sin^2 x - x + 1}} \), we will follow these steps: ### Step 1: Evaluate the limit directly First, we substitute \( x = 0 \) into the expression: - In the numerator: \[ 0 + 2\sin(0) = 0 + 0 = 0 \] - In the denominator: \[ \sqrt{0^2 + 2\sin(0) + 1} - \sqrt{\sin^2(0) - 0 + 1} = \sqrt{0 + 0 + 1} - \sqrt{0 - 0 + 1} = 1 - 1 = 0 \] Since both the numerator and denominator approach 0, we have an indeterminate form \( \frac{0}{0} \). ### Step 2: Rationalize the denominator To resolve the indeterminate form, we will multiply the numerator and denominator by the conjugate of the denominator: \[ \lim_{x \to 0} \frac{(x + 2\sin x)(\sqrt{x^2 + 2\sin x + 1} + \sqrt{\sin^2 x - x + 1})}{(\sqrt{x^2 + 2\sin x + 1} - \sqrt{\sin^2 x - x + 1})(\sqrt{x^2 + 2\sin x + 1} + \sqrt{\sin^2 x - x + 1})} \] The denominator simplifies to: \[ (\sqrt{x^2 + 2\sin x + 1})^2 - (\sqrt{\sin^2 x - x + 1})^2 = (x^2 + 2\sin x + 1) - (\sin^2 x - x + 1) \] ### Step 3: Simplify the denominator Now, simplifying the denominator: \[ x^2 + 2\sin x + 1 - \sin^2 x + x - 1 = x^2 + x + 2\sin x - \sin^2 x \] ### Step 4: Rewrite the limit Now we rewrite the limit: \[ \lim_{x \to 0} \frac{(x + 2\sin x)(\sqrt{x^2 + 2\sin x + 1} + \sqrt{\sin^2 x - x + 1})}{x^2 + x + 2\sin x - \sin^2 x} \] ### Step 5: Evaluate the limit again Substituting \( x = 0 \) again: - The numerator becomes: \[ (0 + 2\sin(0))(\sqrt{0 + 0 + 1} + \sqrt{0 - 0 + 1}) = 0 \cdot (1 + 1) = 0 \] - The denominator becomes: \[ {0^2 + 0 + 2\sin(0) - \sin^2(0)} = 0 + 0 + 0 - 0 = 0 \] We still have \( \frac{0}{0} \), so we apply L'Hôpital's Rule. ### Step 6: Apply L'Hôpital's Rule Differentiate the numerator and denominator: - The derivative of the numerator \( x + 2\sin x \) is: \[ 1 + 2\cos x \] - The derivative of the denominator \( x^2 + x + 2\sin x - \sin^2 x \) is: \[ 2x + 1 + 2\cos x - 2\sin x \cos x \] ### Step 7: Evaluate the limit again Now we evaluate: \[ \lim_{x \to 0} \frac{1 + 2\cos x}{2x + 1 + 2\cos x - 2\sin x \cos x} \] Substituting \( x = 0 \): - The numerator becomes: \[ 1 + 2\cos(0) = 1 + 2 \cdot 1 = 3 \] - The denominator becomes: \[ 2 \cdot 0 + 1 + 2\cos(0) - 2\sin(0)\cos(0) = 0 + 1 + 2 \cdot 1 - 0 = 3 \] Thus, the limit simplifies to: \[ \frac{3}{3} = 1 \] ### Final Answer So the limit is: \[ \lim_{x \to 0} \frac{x + 2\sin x}{\sqrt{x^2 + 2\sin x + 1} - \sqrt{\sin^2 x - x + 1}} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|5 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (2x)/(sqrt(1+x)-1)

lim_(x->0) (2+2x+sin2x)/((2x+sin2x)e^sinx) is

lim_(xrarr0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is equal to

lim_(x->0)(2 7^x-9^x-3^x+1)/(sqrt(2)-sqrt(1+cosx))

lim_(xrarr0^-)(sinx)/(sqrt(x)) is equal to

lim_(x to 0) (1 - cos x)/(x sqrt(x^(2))

The value of lim_(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) equals

lim_(x->0) (2e^sinx-e^(-sinx)-1)/(x^2+2x)

cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=(x)/(2), x in (0,(pi)/(4))

lim_(xrarr0) (x^(2)-x)/(sinx)

JEE MAINS PREVIOUS YEAR ENGLISH-JEE MAINS-All Questions
  1. if int(0)^f(x) 4x^(3)dx=g(x)(x-2) if f(2)=6 and f'(2)=(1)/(48) then f...

    Text Solution

    |

  2. If [-sintheta]y=0 and [cottheta]x+y=0 where [] denotes greatest intega...

    Text Solution

    |

  3. lim(x->0)(x+2sinx)/(sqrt(x^2+2sinx+1)-sqrt(sin^2x-x+1))

    Text Solution

    |

  4. If AcapBsubeC and AcapB≠phi. Then which of the following is incorrect ...

    Text Solution

    |

  5. Let f(x)=5-[x-2] g(x)=[x+1]+3 If maximum value of f(x) is alpha ...

    Text Solution

    |

  6. If |{:(1+cos^(2)theta,sin^(2)theta,4cos6theta),(cos^(2)theta,1+sin^(2)...

    Text Solution

    |

  7. A circle touches x-axis at point (3,0). If it makes an intercept of 8 ...

    Text Solution

    |

  8. The sum of the squares of the length of the chords intercepted on the ...

    Text Solution

    |

  9. Let A and B be two non-null events such that AsubeB. Then, which of th...

    Text Solution

    |

  10. If alpha and beta be the roots of the equation x^(2)-2x+2=0, then the ...

    Text Solution

    |

  11. The area (in sq. units) of the region A={(x,y) inRRxxRR|0lexle3,0leyle...

    Text Solution

    |

  12. Let S(1) is set of minima and S(2) is set of maxima for the curve y=9x...

    Text Solution

    |

  13. If alpha=cos^(-1)((3)/(5)),beta=tan^(-1)((1)/(3)), where 0ltalpha,beta...

    Text Solution

    |

  14. let 2..^(20)C(0)+5.^(20)C(1)+8.^(20)C(2)+?.+62.^(20)C(20). Then sum of...

    Text Solution

    |

  15. if |sqrt(x)-2|+sqrt(x)(sqrt(x)-4)+2=0 then find the sum of roots of eq...

    Text Solution

    |

  16. if the tangents on the ellipse 4x^(2)+y^(2)=8 at the points (1,2...

    Text Solution

    |

  17. The value of the integral int(0)^(1)xcot^(-1)(1-x^(2)+x^(4)) dx is

    Text Solution

    |

  18. let P be the plane, which contains the line of intersection of the pla...

    Text Solution

    |

  19. If the lines x+(a-1)y=1 and 2x+1a^(2)y=1 there ainR-{0,1} are perpendi...

    Text Solution

    |

  20. The point lying on common tangent to the circles x^(2)+y^(2)=4 and x^(...

    Text Solution

    |