Home
Class 12
MATHS
Let f(x)=5-[x-2] g(x)=[x+1]+3 If max...

Let `f(x)=5-[x-2]`
`g(x)=[x+1]+3`
If maximum value of `f(x)` is `alpha`
`&` minimum value of `f(x)` is `beta`
then `underset(xrarr(alpha-beta))lim ((x-3)(x^(2)-5x+6))/((x-1)(x^(2)-6x+8))` is (A) -1/2 (B)1/2 (C)3/2 (D)-3/2

A

`-(1)/(2)`

B

`(1)/(2)`

C

`(3)/(2)`

D

`-(3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, let's break it down as follows: ### Step 1: Determine the maximum and minimum values of \( f(x) \) The function \( f(x) = 5 - [x - 2] \) involves the greatest integer function. The greatest integer function, denoted by \( [x] \), gives the largest integer less than or equal to \( x \). - To find the maximum value of \( f(x) \), we need to minimize \( [x - 2] \). The minimum value of \( [x - 2] \) occurs when \( x \) is exactly 2, giving: \[ [2 - 2] = [0] = 0 \] Thus, the maximum value of \( f(x) \) is: \[ f(2) = 5 - 0 = 5 \] Therefore, \( \alpha = 5 \). ### Step 2: Determine the minimum value of \( g(x) \) The function \( g(x) = [x + 1] + 3 \) also involves the greatest integer function. - To find the minimum value of \( g(x) \), we need to minimize \( [x + 1] \). The minimum value of \( [x + 1] \) occurs when \( x = -1 \), giving: \[ [-1 + 1] = [0] = 0 \] Thus, the minimum value of \( g(x) \) is: \[ g(-1) = 0 + 3 = 3 \] Therefore, \( \beta = 3 \). ### Step 3: Calculate \( \alpha - \beta \) Now we compute: \[ \alpha - \beta = 5 - 3 = 2 \] ### Step 4: Evaluate the limit We need to evaluate the limit: \[ \lim_{x \to 2} \frac{(x - 3)(x^2 - 5x + 6)}{(x - 1)(x^2 - 6x + 8)} \] #### Step 4.1: Factor the expressions First, we factor the quadratic expressions: - \( x^2 - 5x + 6 = (x - 2)(x - 3) \) - \( x^2 - 6x + 8 = (x - 2)(x - 4) \) Substituting these factorizations into the limit gives: \[ \lim_{x \to 2} \frac{(x - 3)(x - 2)(x - 3)}{(x - 1)(x - 2)(x - 4)} \] #### Step 4.2: Cancel common factors We can cancel \( (x - 2) \) from the numerator and denominator: \[ \lim_{x \to 2} \frac{(x - 3)^2}{(x - 1)(x - 4)} \] #### Step 4.3: Substitute \( x = 2 \) Now we substitute \( x = 2 \): \[ = \frac{(2 - 3)^2}{(2 - 1)(2 - 4)} = \frac{(-1)^2}{(1)(-2)} = \frac{1}{-2} = -\frac{1}{2} \] ### Final Answer Thus, the final answer is: \[ \boxed{-\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=5-|x-2| and g(x)=|x+1|, x in R . If f(x) attains maximum value at alpha ang g(x) attains minimum value of beta , then underset(xto-alpha beta)lim((x-1)(x^(2)-5x+6))/(x^(2)-6x+8) is equal to (a) -1/2 (b) -3/2 (c) 1/2 (d) 3/2

If f(x)=|x-2|+x^(2)-1 and g(x)+f(x)=x^(2)+3 , find the maximum value of g(x) .

f(x)=x^2+1/(x^2)-6x-6/x+2 then min value of f(x)

Find the maximum and the minimum values of f(x)=3x^2+6x+8,\ \ x in R , if any.

If f(x) = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5) , then the value of f' (5) is equal to

Let f(x)=8x^(3)-6x^(2)-2x+1, then

If f(x) is an invertible function and g(x)=2f(x)+5, then the value of g^(-1)(x)i s (a) 2f^(-1)(x)-5 (b) 1/(2f^(-1)(x)+5) 1/2f^(-1)(x)+5 (d) f^(-1)((x-5)/2)

If f(x) is an invertible function and g(x)=2f(x)+5, then the value of g^(-1)(x)i s (a) 2f^(-1)(x)-5 (b) 1/(2f^(-1)(x)+5) 1/2f^(-1)(x)+5 (d) f^(-1)((x-5)/2)

If 3x+2y=1 is a tangent to y=f(x) at x=1//2 , then lim_(xrarr0) (x(x-1))/(f((e^(2x))/(2))-f((e^(-2x))/(2)))

If x = -1 and x = 2 are extreme points of f(x) = alpha log|x| + beta x^2 + x , then

JEE MAINS PREVIOUS YEAR ENGLISH-JEE MAINS-All Questions
  1. lim(x->0)(x+2sinx)/(sqrt(x^2+2sinx+1)-sqrt(sin^2x-x+1))

    Text Solution

    |

  2. If AcapBsubeC and AcapB≠phi. Then which of the following is incorrect ...

    Text Solution

    |

  3. Let f(x)=5-[x-2] g(x)=[x+1]+3 If maximum value of f(x) is alpha ...

    Text Solution

    |

  4. If |{:(1+cos^(2)theta,sin^(2)theta,4cos6theta),(cos^(2)theta,1+sin^(2)...

    Text Solution

    |

  5. A circle touches x-axis at point (3,0). If it makes an intercept of 8 ...

    Text Solution

    |

  6. The sum of the squares of the length of the chords intercepted on the ...

    Text Solution

    |

  7. Let A and B be two non-null events such that AsubeB. Then, which of th...

    Text Solution

    |

  8. If alpha and beta be the roots of the equation x^(2)-2x+2=0, then the ...

    Text Solution

    |

  9. The area (in sq. units) of the region A={(x,y) inRRxxRR|0lexle3,0leyle...

    Text Solution

    |

  10. Let S(1) is set of minima and S(2) is set of maxima for the curve y=9x...

    Text Solution

    |

  11. If alpha=cos^(-1)((3)/(5)),beta=tan^(-1)((1)/(3)), where 0ltalpha,beta...

    Text Solution

    |

  12. let 2..^(20)C(0)+5.^(20)C(1)+8.^(20)C(2)+?.+62.^(20)C(20). Then sum of...

    Text Solution

    |

  13. if |sqrt(x)-2|+sqrt(x)(sqrt(x)-4)+2=0 then find the sum of roots of eq...

    Text Solution

    |

  14. if the tangents on the ellipse 4x^(2)+y^(2)=8 at the points (1,2...

    Text Solution

    |

  15. The value of the integral int(0)^(1)xcot^(-1)(1-x^(2)+x^(4)) dx is

    Text Solution

    |

  16. let P be the plane, which contains the line of intersection of the pla...

    Text Solution

    |

  17. If the lines x+(a-1)y=1 and 2x+1a^(2)y=1 there ainR-{0,1} are perpendi...

    Text Solution

    |

  18. The point lying on common tangent to the circles x^(2)+y^(2)=4 and x^(...

    Text Solution

    |

  19. The mean and median of 10,22,26,29,34,x,42,67,70,y (in increasing orde...

    Text Solution

    |

  20. If y(x) satisfies the differential equation cosx (dy)/(dx)-y sinx =6x....

    Text Solution

    |