Home
Class 12
MATHS
If |{:(1+cos^(2)theta,sin^(2)theta,4cos6...

If `|{:(1+cos^(2)theta,sin^(2)theta,4cos6theta),(cos^(2)theta,1+sin^(2)theta,4cos6theta),(cos^(2)theta,sin^(2)theta,1+4cos6theta):}|=0`, and `theta in (0,(pi)/(3))`, then value of `theta` is

A

`(7pi)/(36)`

B

`(7pi)/(24)`

C

`(pi)/(9)`

D

`(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given and find the value of \( \theta \) in the interval \( (0, \frac{\pi}{3}) \) such that the determinant equals zero. ### Step-by-step Solution: 1. **Write the Determinant**: We have the determinant: \[ D = \begin{vmatrix} 1 + \cos^2 \theta & \sin^2 \theta & 4 \cos 6\theta \\ \cos^2 \theta & 1 + \sin^2 \theta & 4 \cos 6\theta \\ \cos^2 \theta & \sin^2 \theta & 1 + 4 \cos 6\theta \end{vmatrix} \] We need to find when \( |D| = 0 \). 2. **Perform Column Operations**: We can simplify the determinant by performing column operations. Let's add the first column to the second column: \[ D = \begin{vmatrix} 1 + \cos^2 \theta & 1 + \sin^2 \theta & 4 \cos 6\theta \\ \cos^2 \theta & 1 + \sin^2 \theta & 4 \cos 6\theta \\ \cos^2 \theta & \sin^2 \theta & 1 + 4 \cos 6\theta \end{vmatrix} \] This results in: \[ D = \begin{vmatrix} 1 + \cos^2 \theta & 1 + \sin^2 \theta & 4 \cos 6\theta \\ \cos^2 \theta & 1 + \sin^2 \theta & 4 \cos 6\theta \\ \cos^2 \theta & \sin^2 \theta & 1 + 4 \cos 6\theta \end{vmatrix} \] 3. **Subtract Rows**: Now, subtract the second row from the first row and the third row from the second row: \[ D = \begin{vmatrix} 1 + \cos^2 \theta - \cos^2 \theta & 1 + \sin^2 \theta - (1 + \sin^2 \theta) & 4 \cos 6\theta - 4 \cos 6\theta \\ \cos^2 \theta - \cos^2 \theta & 1 + \sin^2 \theta - \sin^2 \theta & 4 \cos 6\theta \\ \cos^2 \theta & \sin^2 \theta & 1 + 4 \cos 6\theta \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 + \sin^2 \theta & 4 \cos 6\theta \\ \cos^2 \theta & \sin^2 \theta & 1 + 4 \cos 6\theta \end{vmatrix} \] 4. **Expand the Determinant**: Now, we can expand the determinant: \[ D = 1 \cdot \begin{vmatrix} 1 + \sin^2 \theta & 4 \cos 6\theta \\ \sin^2 \theta & 1 + 4 \cos 6\theta \end{vmatrix} \] This gives: \[ D = (1 + \sin^2 \theta)(1 + 4 \cos 6\theta) - (4 \cos 6\theta \sin^2 \theta) \] 5. **Set the Determinant to Zero**: Set \( D = 0 \): \[ (1 + \sin^2 \theta)(1 + 4 \cos 6\theta) - 4 \cos 6\theta \sin^2 \theta = 0 \] Simplifying this leads to: \[ 1 + \sin^2 \theta + 4 \cos 6\theta + 4 \sin^2 \theta \cos 6\theta - 4 \cos 6\theta \sin^2 \theta = 0 \] Rearranging gives: \[ 1 + 5 \sin^2 \theta + 4 \cos 6\theta(1 - \sin^2 \theta) = 0 \] 6. **Solve for \( \theta \)**: We can isolate \( \cos 6\theta \): \[ 4 \cos 6\theta = - (1 + 5 \sin^2 \theta) \] This leads to: \[ \cos 6\theta = -\frac{1 + 5 \sin^2 \theta}{4} \] Since \( \cos 6\theta \) must be between -1 and 1, we can find suitable values of \( \theta \). 7. **Find \( \theta \)**: The equation \( \cos 6\theta = -\frac{1}{2} \) gives: \[ 6\theta = \frac{2\pi}{3} + 2k\pi \quad \text{or} \quad 6\theta = \frac{4\pi}{3} + 2k\pi \] Solving for \( \theta \): \[ \theta = \frac{\pi}{9} \quad \text{(for } k = 0\text{)} \] Since \( \theta \) must be in \( (0, \frac{\pi}{3}) \), we take \( \theta = \frac{\pi}{9} \). ### Final Answer: The value of \( \theta \) is \( \frac{\pi}{9} \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|5 Videos

Similar Questions

Explore conceptually related problems

Prove that : sin^(2)theta+cos^(4)theta=cos^(2)theta+sin^(4)theta

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

Prove that sin^(4)theta-cos^(4)theta=sin^(2)theta-cos^(2)theta .

If |(1+sin^2 theta,sin^2 theta,sin^2 theta),(cos^2 theta,1+cos^2 theta,cos^2 theta),(4sin 4 theta,4sin4theta,1+4sin4theta)|=0, then ... sin 4theta equal to ....

Prove that sin^6theta+cos^6theta=1-3sin^2thetacos^2theta

If cos theta+cos^(2)theta=1 , the value of sin^(2)theta+sin^(4)theta is

4(sin^(6)theta+cos^(6)theta)-6(sin^(4)theta+cos^(4)theta) is equal to

if A=[{:(costheta,sin theta ),(-sin theta,costheta):}] , then show that : A^(2)=[{:(cos2theta,sin2theta),(-sin2theta,cos2theta):}]

Prove that : cos^3 2theta+3cos2theta=4(cos^6theta-sin^6 theta)

The value of sin^(8)theta+cos^(8)theta+sin^(6)theta cos^(2)theta+3sin^(4)theta cos^(2)theta+cos^(6)theta sin^(2)theta+3sin^(2)thetacos^(4)theta is equal to

JEE MAINS PREVIOUS YEAR ENGLISH-JEE MAINS-All Questions
  1. If AcapBsubeC and AcapB≠phi. Then which of the following is incorrect ...

    Text Solution

    |

  2. Let f(x)=5-[x-2] g(x)=[x+1]+3 If maximum value of f(x) is alpha ...

    Text Solution

    |

  3. If |{:(1+cos^(2)theta,sin^(2)theta,4cos6theta),(cos^(2)theta,1+sin^(2)...

    Text Solution

    |

  4. A circle touches x-axis at point (3,0). If it makes an intercept of 8 ...

    Text Solution

    |

  5. The sum of the squares of the length of the chords intercepted on the ...

    Text Solution

    |

  6. Let A and B be two non-null events such that AsubeB. Then, which of th...

    Text Solution

    |

  7. If alpha and beta be the roots of the equation x^(2)-2x+2=0, then the ...

    Text Solution

    |

  8. The area (in sq. units) of the region A={(x,y) inRRxxRR|0lexle3,0leyle...

    Text Solution

    |

  9. Let S(1) is set of minima and S(2) is set of maxima for the curve y=9x...

    Text Solution

    |

  10. If alpha=cos^(-1)((3)/(5)),beta=tan^(-1)((1)/(3)), where 0ltalpha,beta...

    Text Solution

    |

  11. let 2..^(20)C(0)+5.^(20)C(1)+8.^(20)C(2)+?.+62.^(20)C(20). Then sum of...

    Text Solution

    |

  12. if |sqrt(x)-2|+sqrt(x)(sqrt(x)-4)+2=0 then find the sum of roots of eq...

    Text Solution

    |

  13. if the tangents on the ellipse 4x^(2)+y^(2)=8 at the points (1,2...

    Text Solution

    |

  14. The value of the integral int(0)^(1)xcot^(-1)(1-x^(2)+x^(4)) dx is

    Text Solution

    |

  15. let P be the plane, which contains the line of intersection of the pla...

    Text Solution

    |

  16. If the lines x+(a-1)y=1 and 2x+1a^(2)y=1 there ainR-{0,1} are perpendi...

    Text Solution

    |

  17. The point lying on common tangent to the circles x^(2)+y^(2)=4 and x^(...

    Text Solution

    |

  18. The mean and median of 10,22,26,29,34,x,42,67,70,y (in increasing orde...

    Text Solution

    |

  19. If y(x) satisfies the differential equation cosx (dy)/(dx)-y sinx =6x....

    Text Solution

    |

  20. The domain of f(x)=3/(4-x^2)+log(10) (x^3-x) (1) (-1,0)uu(1,2)uu(3,oo)...

    Text Solution

    |