Home
Class 12
MATHS
The area (in sq. units) of the region A=...

The area (in sq. units) of the region `A={(x,y) inRRxxRR|0lexle3,0leyle4,ylex^(2)+3x}` is:

A

`(53)/(6)`

B

8

C

`(59)/(6)`

D

`(26)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the region \( A = \{(x,y) \in \mathbb{R}^2 | 0 \leq x \leq 3, 0 \leq y \leq 4, y \leq x^2 + 3x\} \), we will follow these steps: ### Step 1: Identify the boundaries of the region The region is bounded by: - The vertical line \( x = 3 \) - The horizontal line \( y = 4 \) - The curve \( y = x^2 + 3x \) ### Step 2: Find the intersection points We need to find where the curve intersects the line \( y = 4 \): \[ 4 = x^2 + 3x \] Rearranging gives: \[ x^2 + 3x - 4 = 0 \] Now, we can factor or use the quadratic formula: \[ (x - 1)(x + 4) = 0 \] Thus, the roots are \( x = 1 \) and \( x = -4 \). Since we are only interested in the region where \( 0 \leq x \leq 3 \), we take the intersection point \( (1, 4) \). ### Step 3: Determine the area under the curve from \( x = 0 \) to \( x = 1 \) We will calculate the area under the curve from \( x = 0 \) to \( x = 1 \): \[ \text{Area}_1 = \int_{0}^{1} (x^2 + 3x) \, dx \] Calculating the integral: \[ = \left[ \frac{x^3}{3} + \frac{3x^2}{2} \right]_{0}^{1} = \left( \frac{1^3}{3} + \frac{3 \cdot 1^2}{2} \right) - \left( \frac{0^3}{3} + \frac{3 \cdot 0^2}{2} \right) \] \[ = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} \] ### Step 4: Determine the area of the rectangle from \( x = 1 \) to \( x = 3 \) The area of the rectangle formed between \( x = 1 \) and \( x = 3 \) with height \( y = 4 \): \[ \text{Area}_2 = \text{width} \times \text{height} = (3 - 1) \times 4 = 2 \times 4 = 8 \] ### Step 5: Total area The total area \( A \) is the sum of the two areas calculated: \[ A = \text{Area}_1 + \text{Area}_2 = \left( \frac{1}{3} + \frac{3}{2} \right) + 8 \] Calculating \( \frac{1}{3} + \frac{3}{2} \): \[ = \frac{2}{6} + \frac{9}{6} = \frac{11}{6} \] So, \[ A = \frac{11}{6} + 8 = \frac{11}{6} + \frac{48}{6} = \frac{59}{6} \] ### Final Answer The area of the region \( A \) is \( \frac{59}{6} \) square units. ---
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|5 Videos

Similar Questions

Explore conceptually related problems

The area (in sq. units) of the region A={(x,y)in R xx R |0 le x le 3, 0 le y le 4, y le x^(2) + 3x} is :

The area (in sq units) of the region A={(x,y): x^(2) le y le x +2} is

The area (in sq units) of the region A={(x,y): x^(2) le y le x +2} is

The area (in sq units) of the region A={(x,y):(y^(2))/(2) le x le y+4} is

The area (in sq. units) of the region A=[(x,y):0leylexabsx+1" and "-1lexlex] is

The area (in sqaure units) of the region {(x,y):x ge 0, x + y le 3, x^(2) le 4y and y le 1 + sqrt(x)} is

The area (in sq. units) of the region {(x,y):y^(2) le 2x and x^(2)+y^(2) le 4x , x ge 0, y le 0}, is

The area (in sq. units) of the region {(x,y):y^(2) le 2x and x^(2)+y^(2) le 4x , x ge 0, y le 0}, is

The area (in sq units) of the region described by {(x,y):y^(2)le2x and yge4x-1} is

If the area (in sq. units) of the region {(x,y): y^(2) lt= 4x,x+y lt=1,xgt=0,ygt=0} is asqrt2+b , then a-b is equal to :

JEE MAINS PREVIOUS YEAR ENGLISH-JEE MAINS-All Questions
  1. Let A and B be two non-null events such that AsubeB. Then, which of th...

    Text Solution

    |

  2. If alpha and beta be the roots of the equation x^(2)-2x+2=0, then the ...

    Text Solution

    |

  3. The area (in sq. units) of the region A={(x,y) inRRxxRR|0lexle3,0leyle...

    Text Solution

    |

  4. Let S(1) is set of minima and S(2) is set of maxima for the curve y=9x...

    Text Solution

    |

  5. If alpha=cos^(-1)((3)/(5)),beta=tan^(-1)((1)/(3)), where 0ltalpha,beta...

    Text Solution

    |

  6. let 2..^(20)C(0)+5.^(20)C(1)+8.^(20)C(2)+?.+62.^(20)C(20). Then sum of...

    Text Solution

    |

  7. if |sqrt(x)-2|+sqrt(x)(sqrt(x)-4)+2=0 then find the sum of roots of eq...

    Text Solution

    |

  8. if the tangents on the ellipse 4x^(2)+y^(2)=8 at the points (1,2...

    Text Solution

    |

  9. The value of the integral int(0)^(1)xcot^(-1)(1-x^(2)+x^(4)) dx is

    Text Solution

    |

  10. let P be the plane, which contains the line of intersection of the pla...

    Text Solution

    |

  11. If the lines x+(a-1)y=1 and 2x+1a^(2)y=1 there ainR-{0,1} are perpendi...

    Text Solution

    |

  12. The point lying on common tangent to the circles x^(2)+y^(2)=4 and x^(...

    Text Solution

    |

  13. The mean and median of 10,22,26,29,34,x,42,67,70,y (in increasing orde...

    Text Solution

    |

  14. If y(x) satisfies the differential equation cosx (dy)/(dx)-y sinx =6x....

    Text Solution

    |

  15. The domain of f(x)=3/(4-x^2)+log(10) (x^3-x) (1) (-1,0)uu(1,2)uu(3,oo)...

    Text Solution

    |

  16. If the sum of first 3 terms of an A.P. is 33 and their product is 1155...

    Text Solution

    |

  17. Find the equations of the tangents to the ellipse 3x^(2)+4^(2)=12 whic...

    Text Solution

    |

  18. Consider f(x)=xsqrt(kx-x^(2)) for xepsilon [0, 3]. Let m be the smalle...

    Text Solution

    |

  19. Let S(n) denote the sum of the first n terms of an A.P.. If S(4)=16 an...

    Text Solution

    |

  20. If the volume of parallelopiped formed by the vectors hati+lamdahatj+h...

    Text Solution

    |