Home
Class 12
MATHS
If alpha=cos^(-1)((3)/(5)),beta=tan^(-1)...

If `alpha=cos^(-1)((3)/(5)),beta=tan^(-1)((1)/(3))`, where `0ltalpha,betalt(pi)/(2)`, then `alpha-beta` is equa to :

A

`tan^(-1)((p)/(5sqrt(10)))`

B

`cos^(-1)((9)/(5sqrt(10)))`

C

`tan^(-1)((9)/(13))`

D

`sin^(-1)((9)/(5sqrt(10)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \alpha = \cos^{-1}\left(\frac{3}{5}\right) \) and \( \beta = \tan^{-1}\left(\frac{1}{3}\right) \), we need to find \( \alpha - \beta \). ### Step-by-Step Solution: 1. **Identify Values of Trigonometric Functions**: - From \( \alpha = \cos^{-1}\left(\frac{3}{5}\right) \), we know that: \[ \cos(\alpha) = \frac{3}{5} \] - From \( \beta = \tan^{-1}\left(\frac{1}{3}\right) \), we know that: \[ \tan(\beta) = \frac{1}{3} \] 2. **Find the Sine of Alpha**: - We can use the Pythagorean identity to find \( \sin(\alpha) \): \[ \sin^2(\alpha) + \cos^2(\alpha) = 1 \] \[ \sin^2(\alpha) + \left(\frac{3}{5}\right)^2 = 1 \] \[ \sin^2(\alpha) + \frac{9}{25} = 1 \] \[ \sin^2(\alpha) = 1 - \frac{9}{25} = \frac{16}{25} \] \[ \sin(\alpha) = \frac{4}{5} \quad (\text{since } \alpha \text{ is in } (0, \frac{\pi}{2})) \] 3. **Find the Sine and Cosine of Beta**: - Since \( \tan(\beta) = \frac{1}{3} \), we can find \( \sin(\beta) \) and \( \cos(\beta) \): \[ \tan(\beta) = \frac{\text{opposite}}{\text{adjacent}} = \frac{1}{3} \] - Let the opposite side be 1 and the adjacent side be 3. Then, the hypotenuse is: \[ \text{hypotenuse} = \sqrt{1^2 + 3^2} = \sqrt{10} \] - Thus, \[ \sin(\beta) = \frac{1}{\sqrt{10}}, \quad \cos(\beta) = \frac{3}{\sqrt{10}} \] 4. **Use the Tangent Subtraction Formula**: - The formula for \( \tan(\alpha - \beta) \) is given by: \[ \tan(\alpha - \beta) = \frac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha) \tan(\beta)} \] - First, find \( \tan(\alpha) \): \[ \tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} = \frac{\frac{4}{5}}{\frac{3}{5}} = \frac{4}{3} \] - Now substitute \( \tan(\alpha) \) and \( \tan(\beta) \): \[ \tan(\alpha - \beta) = \frac{\frac{4}{3} - \frac{1}{3}}{1 + \frac{4}{3} \cdot \frac{1}{3}} = \frac{\frac{3}{3}}{1 + \frac{4}{9}} = \frac{1}{\frac{13}{9}} = \frac{9}{13} \] 5. **Find \( \alpha - \beta \)**: - Since \( \tan(\alpha - \beta) = \frac{9}{13} \), we can express \( \alpha - \beta \) as: \[ \alpha - \beta = \tan^{-1}\left(\frac{9}{13}\right) \] ### Final Answer: Thus, \( \alpha - \beta = \tan^{-1}\left(\frac{9}{13}\right) \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|5 Videos

Similar Questions

Explore conceptually related problems

If alpha = cos^(-1)((3)/(5)), beta = tan ^(-1)((1)/(3)) , where 0 lt alpha, beta lt (pi)/(2) , then alpha - beta is equal to

If alpha+beta=pi/(4), then (1+"tan"alpha)(1+"tan"beta) is

If alpha=tan^(-1)(t a n(5pi)/4)a n dbeta=tan^(-1)(-tan(2pi)/3),t h e n 4alpha=3beta (b) 3alpha=4beta (c) alpha-beta=74alpha=(3beta)/(12) none of these

If alpha=tan^(-1)(t a n(5pi)/4)a n dbeta=tan^(-1)(-tan((2pi)/3)),t h e n (a) 4alpha=3beta (b) 3alpha=4beta (c) alpha-beta=74alpha=(3beta)/(12) (d) none of these

Let (sqrt(2)sin alpha)/sqrt(1+cos 2alpha)=1/7 and sqrt((1-cos2 beta)/2)=1/sqrt(10) where alpha,beta in (0,pi/2) . Then tan(alpha+2beta) is equal to

If alpha+beta=pi/4 then (1+tan alpha)(1+tan beta)=

If sqrt2(sin alpha)/(sqrt(1+cos2 alpha))=1/7 and sqrt((1-cos2beta)/2)=1/(sqrt(10)) alpha, beta in (0, pi/2) then tan (alpha + 2 beta) is equal to _________

If (sqrt(2)cos alpha)/sqrt(1-cos2 alpha)=1/7 and sqrt((1+cos 2 beta)/2)=1/sqrt10,alpha,beta in (pi/2,pi) , then tan (2 alpha - beta) is equal to ........

If tan alpha=(1+2^(-x))^(-1), tan beta=(1+2^(x+1))^(-1) then alpha+beta equals

If cos alpha=(2cos beta-1)/(2-cos beta) then tan (alpha/2) is equal to

JEE MAINS PREVIOUS YEAR ENGLISH-JEE MAINS-All Questions
  1. The area (in sq. units) of the region A={(x,y) inRRxxRR|0lexle3,0leyle...

    Text Solution

    |

  2. Let S(1) is set of minima and S(2) is set of maxima for the curve y=9x...

    Text Solution

    |

  3. If alpha=cos^(-1)((3)/(5)),beta=tan^(-1)((1)/(3)), where 0ltalpha,beta...

    Text Solution

    |

  4. let 2..^(20)C(0)+5.^(20)C(1)+8.^(20)C(2)+?.+62.^(20)C(20). Then sum of...

    Text Solution

    |

  5. if |sqrt(x)-2|+sqrt(x)(sqrt(x)-4)+2=0 then find the sum of roots of eq...

    Text Solution

    |

  6. if the tangents on the ellipse 4x^(2)+y^(2)=8 at the points (1,2...

    Text Solution

    |

  7. The value of the integral int(0)^(1)xcot^(-1)(1-x^(2)+x^(4)) dx is

    Text Solution

    |

  8. let P be the plane, which contains the line of intersection of the pla...

    Text Solution

    |

  9. If the lines x+(a-1)y=1 and 2x+1a^(2)y=1 there ainR-{0,1} are perpendi...

    Text Solution

    |

  10. The point lying on common tangent to the circles x^(2)+y^(2)=4 and x^(...

    Text Solution

    |

  11. The mean and median of 10,22,26,29,34,x,42,67,70,y (in increasing orde...

    Text Solution

    |

  12. If y(x) satisfies the differential equation cosx (dy)/(dx)-y sinx =6x....

    Text Solution

    |

  13. The domain of f(x)=3/(4-x^2)+log(10) (x^3-x) (1) (-1,0)uu(1,2)uu(3,oo)...

    Text Solution

    |

  14. If the sum of first 3 terms of an A.P. is 33 and their product is 1155...

    Text Solution

    |

  15. Find the equations of the tangents to the ellipse 3x^(2)+4^(2)=12 whic...

    Text Solution

    |

  16. Consider f(x)=xsqrt(kx-x^(2)) for xepsilon [0, 3]. Let m be the smalle...

    Text Solution

    |

  17. Let S(n) denote the sum of the first n terms of an A.P.. If S(4)=16 an...

    Text Solution

    |

  18. If the volume of parallelopiped formed by the vectors hati+lamdahatj+h...

    Text Solution

    |

  19. If the line (x-2)/(3)=(y+1)/(2)=(z-1)/(-1) intersects the plane 2x+3y-...

    Text Solution

    |

  20. The derivative of tan^(-1) ((sinx -cosx)/(sinx +cosx)), with respect t...

    Text Solution

    |