Home
Class 12
MATHS
let 2..^(20)C(0)+5.^(20)C(1)+8.^(20)C(2)...

let `2..^(20)C_(0)+5.^(20)C_(1)+8.^(20)C_(2)+?.+62.^(20)C_(20)`. Then sum of this series is

A

`2^(26)`

B

`2^(25)`

C

`2^(23)`

D

`2^(24)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum: \[ S = 2 \cdot \binom{20}{0} + 5 \cdot \binom{20}{1} + 8 \cdot \binom{20}{2} + \ldots + 62 \cdot \binom{20}{20} \] ### Step 1: Express the series in a more manageable form We can rewrite the series as: \[ S = \sum_{k=0}^{20} (2 + 3k) \cdot \binom{20}{k} \] This is because the coefficients \(2, 5, 8, \ldots, 62\) can be expressed as \(2 + 3k\) where \(k\) ranges from \(0\) to \(20\). ### Step 2: Split the sum We can split \(S\) into two separate sums: \[ S = \sum_{k=0}^{20} 2 \cdot \binom{20}{k} + \sum_{k=0}^{20} 3k \cdot \binom{20}{k} \] ### Step 3: Evaluate the first sum The first sum is: \[ \sum_{k=0}^{20} 2 \cdot \binom{20}{k} = 2 \cdot \sum_{k=0}^{20} \binom{20}{k} = 2 \cdot 2^{20} \] This is because the sum of binomial coefficients \(\sum_{k=0}^{n} \binom{n}{k} = 2^n\). ### Step 4: Evaluate the second sum The second sum can be evaluated using the identity \(k \cdot \binom{n}{k} = n \cdot \binom{n-1}{k-1}\): \[ \sum_{k=0}^{20} 3k \cdot \binom{20}{k} = 3 \cdot 20 \cdot \sum_{k=1}^{20} \binom{19}{k-1} = 3 \cdot 20 \cdot 2^{19} \] ### Step 5: Combine the results Now we can combine both sums: \[ S = 2 \cdot 2^{20} + 60 \cdot 2^{19} \] Factoring out \(2^{19}\): \[ S = 2^{19} (2 \cdot 2 + 60) = 2^{19} (4 + 60) = 2^{19} \cdot 64 \] ### Step 6: Simplify the expression Now we simplify: \[ S = 64 \cdot 2^{19} = 2^6 \cdot 2^{19} = 2^{25} \] ### Final Answer Thus, the sum of the series is: \[ \boxed{2^{25}} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|5 Videos

Similar Questions

Explore conceptually related problems

The value of r for which .^(20)C_(r ), .^(20)C_(r - 1) .^(20)C_(1) + .^(20)C_(2) + …… + .^(20)C_(0) .^(20)C_(r ) is maximum, is

The value of r for which .^(20)C_(r ), .^(20)C_(r - 1) .^(20)C_(1) + .^(20)C_(2) + …… + .^(20)C_(0) .^(20)C_(r ) is maximum, is

Evaluate: .^(20)C_(5)+^(20)C_(4)+^(21)C_(4)+^(22)C_(4)

The sum ""^(20)C_(0)+""^(20)C_(1)+""^(20)C_(2)+……+""^(20)C_(10) is equal to :

The sum of the series .^(20)C_(0)-.^(20)C_(1)+ .^(20)C_(2)-.^(20)C_(3)+...-.+ .^(20)C_(10) is -

If a= .^(20)C_(0) + .^(20)C_(3) + .^(20)C_(6) + .^(20)C_(9) + "…..", b = .^(20)C_(1) + .^(20)C_(4) + .^(20)C_(7) + "……"' and c = .^(20)C_(2) + .^(20)C_(5) + .^(20)C_(8) + "…..", then Value of a^(3) + b^(3) + c^(3) - 3abc is

The sum ""^(40)C_(0) + ""^(40)C_(1)+""^(40)C_(2)+…+""^(40)C_(20) is equal to

If .^(20)C_(1)+(2^(2)) .^(20)C_(2) + (3^(2)).^(20)C_(3) +......+(20^(2)).^(20)C_(20)=A(2^(beta)) , then the ordered pair (A, beta) is equal to

If m, n, r, in N then .^(m)C_(0).^(n)C_(r) + .^(m)C_(1).^(n)C_(r-1)+"…….."+.^(m)C_(r).^(n)C_(0) = coefficient of x^(r) in (1+x)^(m)(1+x)^(n) = coefficient of x^(f) in (1+x)^(m+n) The value of r for which S = .^(20)C_(r.).^(10)C_(0)+.^(20)C_(r-1).^(10)C_(1)+"........".^(20)C_(0).^(10)C_(r) is maximum can not be

If m, n, r, in N then .^(m)C_(0).^(n)C_(r) + .^(m)C_(1).^(n)C_(r-1)+"…….."+.^(m)C_(r).^(n)C_(0) = coefficient of x^(r) in (1+x)^(m)(1+x)^(n) = coefficient of x^(f) in (1+x)^(m+n) The value of r(0 le r le 30) for which S = .^(20)C_(r).^(10)C_(0) + .^(20)C_(r-1).^(10)C_(1) + ........ + .^(20)C_(0).^(10)C_(r) is minimum can not be

JEE MAINS PREVIOUS YEAR ENGLISH-JEE MAINS-All Questions
  1. Let S(1) is set of minima and S(2) is set of maxima for the curve y=9x...

    Text Solution

    |

  2. If alpha=cos^(-1)((3)/(5)),beta=tan^(-1)((1)/(3)), where 0ltalpha,beta...

    Text Solution

    |

  3. let 2..^(20)C(0)+5.^(20)C(1)+8.^(20)C(2)+?.+62.^(20)C(20). Then sum of...

    Text Solution

    |

  4. if |sqrt(x)-2|+sqrt(x)(sqrt(x)-4)+2=0 then find the sum of roots of eq...

    Text Solution

    |

  5. if the tangents on the ellipse 4x^(2)+y^(2)=8 at the points (1,2...

    Text Solution

    |

  6. The value of the integral int(0)^(1)xcot^(-1)(1-x^(2)+x^(4)) dx is

    Text Solution

    |

  7. let P be the plane, which contains the line of intersection of the pla...

    Text Solution

    |

  8. If the lines x+(a-1)y=1 and 2x+1a^(2)y=1 there ainR-{0,1} are perpendi...

    Text Solution

    |

  9. The point lying on common tangent to the circles x^(2)+y^(2)=4 and x^(...

    Text Solution

    |

  10. The mean and median of 10,22,26,29,34,x,42,67,70,y (in increasing orde...

    Text Solution

    |

  11. If y(x) satisfies the differential equation cosx (dy)/(dx)-y sinx =6x....

    Text Solution

    |

  12. The domain of f(x)=3/(4-x^2)+log(10) (x^3-x) (1) (-1,0)uu(1,2)uu(3,oo)...

    Text Solution

    |

  13. If the sum of first 3 terms of an A.P. is 33 and their product is 1155...

    Text Solution

    |

  14. Find the equations of the tangents to the ellipse 3x^(2)+4^(2)=12 whic...

    Text Solution

    |

  15. Consider f(x)=xsqrt(kx-x^(2)) for xepsilon [0, 3]. Let m be the smalle...

    Text Solution

    |

  16. Let S(n) denote the sum of the first n terms of an A.P.. If S(4)=16 an...

    Text Solution

    |

  17. If the volume of parallelopiped formed by the vectors hati+lamdahatj+h...

    Text Solution

    |

  18. If the line (x-2)/(3)=(y+1)/(2)=(z-1)/(-1) intersects the plane 2x+3y-...

    Text Solution

    |

  19. The derivative of tan^(-1) ((sinx -cosx)/(sinx +cosx)), with respect t...

    Text Solution

    |

  20. The angle of elevation of the loop of a vertical tower standing on a h...

    Text Solution

    |