Home
Class 12
PHYSICS
Let |oversettoA(1)|=3|oversettoA(2)=5 an...

Let `|oversettoA_(1)|=3|oversettoA_(2)=5` and `|oversettoA_(1)+oversettoA_(2)|=5`. The value of `(2oversettoA_(1)+3oversettoA_(2))*(3oversettoA_(1)-2oversettoA_(2))`is

A

`-106.5`

B

`-99.5`

C

`-112.5`

D

`-118.5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( (2\vec{A_1} + 3\vec{A_2}) \cdot (3\vec{A_1} - 2\vec{A_2}) \) given the magnitudes of the vectors and their sum. ### Step 1: Given Information We have: - \( |\vec{A_1}| = 3 \) - \( |\vec{A_2}| = 5 \) - \( |\vec{A_1} + \vec{A_2}| = 5 \) ### Step 2: Use the Dot Product Formula We know that: \[ |\vec{A_1} + \vec{A_2}|^2 = |\vec{A_1}|^2 + |\vec{A_2}|^2 + 2\vec{A_1} \cdot \vec{A_2} \] Substituting the known values: \[ 5^2 = 3^2 + 5^2 + 2\vec{A_1} \cdot \vec{A_2} \] This simplifies to: \[ 25 = 9 + 25 + 2\vec{A_1} \cdot \vec{A_2} \] \[ 25 = 34 + 2\vec{A_1} \cdot \vec{A_2} \] Rearranging gives: \[ 2\vec{A_1} \cdot \vec{A_2} = 25 - 34 = -9 \] Thus, \[ \vec{A_1} \cdot \vec{A_2} = -\frac{9}{2} \] ### Step 3: Expand the Expression Now we need to calculate: \[ (2\vec{A_1} + 3\vec{A_2}) \cdot (3\vec{A_1} - 2\vec{A_2}) \] Expanding this using the distributive property: \[ = 2\vec{A_1} \cdot 3\vec{A_1} + 2\vec{A_1} \cdot (-2\vec{A_2}) + 3\vec{A_2} \cdot 3\vec{A_1} + 3\vec{A_2} \cdot (-2\vec{A_2}) \] This simplifies to: \[ = 6\vec{A_1} \cdot \vec{A_1} - 4\vec{A_1} \cdot \vec{A_2} + 9\vec{A_2} \cdot \vec{A_1} - 6\vec{A_2} \cdot \vec{A_2} \] ### Step 4: Substitute Values Now substituting the known values: - \( \vec{A_1} \cdot \vec{A_1} = |\vec{A_1}|^2 = 3^2 = 9 \) - \( \vec{A_2} \cdot \vec{A_2} = |\vec{A_2}|^2 = 5^2 = 25 \) - \( \vec{A_1} \cdot \vec{A_2} = -\frac{9}{2} \) Substituting these into the expression: \[ = 6(9) - 4\left(-\frac{9}{2}\right) + 9\left(-\frac{9}{2}\right) - 6(25) \] Calculating each term: \[ = 54 + 18 - \frac{81}{2} - 150 \] Converting \( 54 \) and \( 150 \) to halves for easier calculation: \[ = \frac{108}{2} + \frac{36}{2} - \frac{81}{2} - \frac{300}{2} \] Combining these: \[ = \frac{108 + 36 - 81 - 300}{2} = \frac{-237}{2} = -118.5 \] ### Final Answer Thus, the value of \( (2\vec{A_1} + 3\vec{A_2}) \cdot (3\vec{A_1} - 2\vec{A_2}) \) is: \[ \boxed{-118.5} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise Chemistry|1 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|452 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise PHYSICS|250 Videos

Similar Questions

Explore conceptually related problems

The value of 1/2 +3/5 =

A_(1) and A_(2) are two vectors such that |A_(1)| = 3 , |A_(2)| = 5 and |A_(1)+A_(2)| = 5 the value of (2A_(1)+3A_(2)).(2A_(1)-2A_(2)) is

Write the value of cos^2(1/2cos^(-1)3/5)

Write the value of cos^2(1/2cos^(-1)(3/5))

The value of cot(cosec^(-1)(5)/(3)+tan^(-1)""(2)/(3)) is

The value of cot(cosec^(-1)(5)/(3)+tan^(-1)""(2)/(3)) is

Find the value of (2^-1+3^-1)^-1-:5^-1

The value of 1^(2) + 3^(2) + 5^(2) + ..... + 25^(2) is

The value of 1^2.C_1 + 3^2.C_3 + 5^2.C_5 + ... is

The value of (0.16)^("log"_(2.5)((1)/(3) + (1)/(3^(2)) + (1)/(3^(3)) + …."to" oo)) , is