Let `|oversettoA_(1)|=3|oversettoA_(2)=5` and `|oversettoA_(1)+oversettoA_(2)|=5`. The value of `(2oversettoA_(1)+3oversettoA_(2))*(3oversettoA_(1)-2oversettoA_(2))`is
A
`-106.5`
B
`-99.5`
C
`-112.5`
D
`-118.5`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we need to find the value of \( (2\vec{A_1} + 3\vec{A_2}) \cdot (3\vec{A_1} - 2\vec{A_2}) \) given the magnitudes of the vectors and their sum.
### Step 1: Given Information
We have:
- \( |\vec{A_1}| = 3 \)
- \( |\vec{A_2}| = 5 \)
- \( |\vec{A_1} + \vec{A_2}| = 5 \)
### Step 2: Use the Dot Product Formula
We know that:
\[
|\vec{A_1} + \vec{A_2}|^2 = |\vec{A_1}|^2 + |\vec{A_2}|^2 + 2\vec{A_1} \cdot \vec{A_2}
\]
Substituting the known values:
\[
5^2 = 3^2 + 5^2 + 2\vec{A_1} \cdot \vec{A_2}
\]
This simplifies to:
\[
25 = 9 + 25 + 2\vec{A_1} \cdot \vec{A_2}
\]
\[
25 = 34 + 2\vec{A_1} \cdot \vec{A_2}
\]
Rearranging gives:
\[
2\vec{A_1} \cdot \vec{A_2} = 25 - 34 = -9
\]
Thus,
\[
\vec{A_1} \cdot \vec{A_2} = -\frac{9}{2}
\]
### Step 3: Expand the Expression
Now we need to calculate:
\[
(2\vec{A_1} + 3\vec{A_2}) \cdot (3\vec{A_1} - 2\vec{A_2})
\]
Expanding this using the distributive property:
\[
= 2\vec{A_1} \cdot 3\vec{A_1} + 2\vec{A_1} \cdot (-2\vec{A_2}) + 3\vec{A_2} \cdot 3\vec{A_1} + 3\vec{A_2} \cdot (-2\vec{A_2})
\]
This simplifies to:
\[
= 6\vec{A_1} \cdot \vec{A_1} - 4\vec{A_1} \cdot \vec{A_2} + 9\vec{A_2} \cdot \vec{A_1} - 6\vec{A_2} \cdot \vec{A_2}
\]
### Step 4: Substitute Values
Now substituting the known values:
- \( \vec{A_1} \cdot \vec{A_1} = |\vec{A_1}|^2 = 3^2 = 9 \)
- \( \vec{A_2} \cdot \vec{A_2} = |\vec{A_2}|^2 = 5^2 = 25 \)
- \( \vec{A_1} \cdot \vec{A_2} = -\frac{9}{2} \)
Substituting these into the expression:
\[
= 6(9) - 4\left(-\frac{9}{2}\right) + 9\left(-\frac{9}{2}\right) - 6(25)
\]
Calculating each term:
\[
= 54 + 18 - \frac{81}{2} - 150
\]
Converting \( 54 \) and \( 150 \) to halves for easier calculation:
\[
= \frac{108}{2} + \frac{36}{2} - \frac{81}{2} - \frac{300}{2}
\]
Combining these:
\[
= \frac{108 + 36 - 81 - 300}{2} = \frac{-237}{2} = -118.5
\]
### Final Answer
Thus, the value of \( (2\vec{A_1} + 3\vec{A_2}) \cdot (3\vec{A_1} - 2\vec{A_2}) \) is:
\[
\boxed{-118.5}
\]
Topper's Solved these Questions
JEE MAINS
JEE MAINS PREVIOUS YEAR ENGLISH|Exercise Chemistry|1 Videos
JEE MAIN
JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|452 Videos
JEE MAINS 2020
JEE MAINS PREVIOUS YEAR ENGLISH|Exercise PHYSICS|250 Videos
Similar Questions
Explore conceptually related problems
The value of 1/2 +3/5 =
A_(1) and A_(2) are two vectors such that |A_(1)| = 3 , |A_(2)| = 5 and |A_(1)+A_(2)| = 5 the value of (2A_(1)+3A_(2)).(2A_(1)-2A_(2)) is
Write the value of cos^2(1/2cos^(-1)3/5)
Write the value of cos^2(1/2cos^(-1)(3/5))
The value of cot(cosec^(-1)(5)/(3)+tan^(-1)""(2)/(3)) is
The value of cot(cosec^(-1)(5)/(3)+tan^(-1)""(2)/(3)) is
Find the value of (2^-1+3^-1)^-1-:5^-1
The value of 1^(2) + 3^(2) + 5^(2) + ..... + 25^(2) is
The value of 1^2.C_1 + 3^2.C_3 + 5^2.C_5 + ... is
The value of (0.16)^("log"_(2.5)((1)/(3) + (1)/(3^(2)) + (1)/(3^(3)) + …."to" oo)) , is
JEE MAINS PREVIOUS YEAR ENGLISH-JEE MAINS-Chemistry