In conductor, if the number of conduction electrons per unit volume is `8.5xx10^(28) m^(-3)` and mean free time is 25 fs (femto seconds), it's approximate resistivity is : `(m_(e)=9.1xx10^(-31) kg)`
In conductor, if the number of conduction electrons per unit volume is `8.5xx10^(28) m^(-3)` and mean free time is 25 fs (femto seconds), it's approximate resistivity is : `(m_(e)=9.1xx10^(-31) kg)`
A
`10^(-6) Omegam`
B
`10^(-7) Omegam`
C
`10^(-8) Omegam`
D
`10^(-5) Omegam`
Text Solution
AI Generated Solution
The correct Answer is:
To find the resistivity of the conductor, we can use the formula:
\[
\rho = \frac{m}{n e^2 \tau}
\]
Where:
- \( \rho \) is the resistivity,
- \( m \) is the mass of the electron,
- \( n \) is the number of conduction electrons per unit volume,
- \( e \) is the charge of the electron,
- \( \tau \) is the mean free time (relaxation time).
### Step 1: Identify the given values
- Number of conduction electrons per unit volume, \( n = 8.5 \times 10^{28} \, \text{m}^{-3} \)
- Mean free time, \( \tau = 25 \, \text{fs} = 25 \times 10^{-15} \, \text{s} \)
- Mass of the electron, \( m = 9.1 \times 10^{-31} \, \text{kg} \)
- Charge of the electron, \( e = 1.6 \times 10^{-19} \, \text{C} \)
### Step 2: Substitute the values into the resistivity formula
Now, substituting the values into the resistivity formula:
\[
\rho = \frac{9.1 \times 10^{-31} \, \text{kg}}{(8.5 \times 10^{28} \, \text{m}^{-3}) \times (1.6 \times 10^{-19} \, \text{C})^2 \times (25 \times 10^{-15} \, \text{s})}
\]
### Step 3: Calculate \( e^2 \)
First, calculate \( e^2 \):
\[
e^2 = (1.6 \times 10^{-19})^2 = 2.56 \times 10^{-38} \, \text{C}^2
\]
### Step 4: Calculate the denominator
Now calculate the denominator:
\[
n e^2 \tau = (8.5 \times 10^{28}) \times (2.56 \times 10^{-38}) \times (25 \times 10^{-15})
\]
Calculating step by step:
1. Calculate \( n e^2 \):
\[
n e^2 = 8.5 \times 10^{28} \times 2.56 \times 10^{-38} = 2.176 \times 10^{-9}
\]
2. Now multiply by \( \tau \):
\[
n e^2 \tau = 2.176 \times 10^{-9} \times 25 \times 10^{-15} = 5.44 \times 10^{-13}
\]
### Step 5: Calculate resistivity
Now substitute back into the resistivity formula:
\[
\rho = \frac{9.1 \times 10^{-31}}{5.44 \times 10^{-13}} \approx 1.67 \times 10^{-18} \, \Omega \cdot \text{m}
\]
### Final Result
Thus, the approximate resistivity of the conductor is:
\[
\rho \approx 1.67 \times 10^{-8} \, \Omega \cdot \text{m}
\]
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
If in a conductor number density of electrons is 8.5xx10^(28) average relaxation time 25 femtosecond mass of electron being 9.1xx10^(-31) kg, the resistivity would be of the order.
Find the relaxation time for free electrons in copper, if the density of mobile electrons in copper, if the density of mobile electrons is 8.4 xx10^(28) m^(-3) . The resistivity of copper at room temperature is 1.7xx10^(-8)Omega m . Given : mass of electron =9.11 xx10^(-31) kg and charge on electron =1.6xx10^(-19)C .
Determine the mass of an electron if for an electron e/m=1.759 xx 10^(8) Cg^(-1) and e=1.6021 xx 10^(-19)C
Find free electrons per unit volume in a wire of density 10^(4)kg//m^(3) , atomic mass number 100 and number of free electron per atom is one.
The mass of an electron is 9.1xx10^(-31) kg and velocity is 2.99xx10^(10) cm s^(-1) . The wavelenth of the electron will be
A straight copper-wire of length 1 = 1000 m and corss-sectional area A = 1.0 m m^(2) carries a current i=4.5A. The sum of electric forces acting on all free electrons in the given wire is M xx 10^(6)N . Find M. Free electron density and resistivity of copper are 8.5 xx 10^(28)//m^(3) and 1.7 xx 10^(-8)Omega .m respectively.
Estimate the average drift velocity of conduction electrons in a copper wire of cross-sectional area 2.5 xx 10^(-7) m^(2) , carrying a current of 2.7 A. Assume the density of conduction electrons to be 9 xx 10^(28) m^(-3) .
Estimate the average drift speed of conduction electrons in a copper wire of cross-sectional area 2.5xx10^(-7)m_(2) carrying current of 1.8 A. Assume the density of conduction electrons to be 9xx 10^(26)m_(3) .
A current , 32 A, is made to pass through a conductor where the free electrons density is 4 xx 10^(28) m^(-3) and its area of cross section is 10^(-6) m^(2) . Find out the value of the drift velocity ( in mm // s ) of free electrons.
Estimate the average drift speed of conduction electrons in a copper wire of cross-sectional area 1.0xx10^(-7)m^(2) carrying a current of 1.5xx10^(-19) A. Assume the density of conduction electrons to be 9xx10^(28)m^(-3) .