Home
Class 12
MATHS
The domain of f(x)=3/(4-x^2)+log(10) (x^...

The domain of `f(x)=3/(4-x^2)+log_(10) (x^3-x)` (1) `(-1,0)uu(1,2)uu(3,oo)` (2) `(-2,-1)uu(-1,0)uu(2,oo)` (3) `(-1,0)uu(1,2)uu(2,oo)` (4) `(1,2)uu(2,oo)`

A

`(-1,0)uu(1,2)uu(3,oo)`

B

`(-2,-1)uu(-1,0)uu(2,oo)`

C

`(-1,0)uu(1,2)uu(2,oo)`

D

`(1,2)uu(2,oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \frac{3}{4 - x^2} + \log_{10}(x^3 - x) \), we need to ensure that both components of the function are defined. ### Step 1: Determine where the first term is defined The first term is \( \frac{3}{4 - x^2} \). This term is undefined when the denominator is zero: \[ 4 - x^2 = 0 \] Solving for \( x \): \[ x^2 = 4 \implies x = 2 \quad \text{or} \quad x = -2 \] Thus, \( x \) cannot be \( 2 \) or \( -2 \). ### Step 2: Determine where the second term is defined The second term is \( \log_{10}(x^3 - x) \). The logarithm is defined only for positive arguments, so we need: \[ x^3 - x > 0 \] Factoring gives: \[ x(x^2 - 1) > 0 \implies x(x - 1)(x + 1) > 0 \] The critical points are \( -1, 0, \) and \( 1 \). We will analyze the sign of the expression in the intervals determined by these points. ### Step 3: Test intervals 1. **Interval \( (-\infty, -1) \)**: Choose \( x = -2 \): \[ (-2)(-2 - 1)(-2 + 1) = (-2)(-3)(-1) = -6 \quad (\text{negative}) \] 2. **Interval \( (-1, 0) \)**: Choose \( x = -0.5 \): \[ (-0.5)(-0.5 - 1)(-0.5 + 1) = (-0.5)(-1.5)(0.5) = 0.375 \quad (\text{positive}) \] 3. **Interval \( (0, 1) \)**: Choose \( x = 0.5 \): \[ (0.5)(0.5 - 1)(0.5 + 1) = (0.5)(-0.5)(1.5) = -0.375 \quad (\text{negative}) \] 4. **Interval \( (1, \infty) \)**: Choose \( x = 2 \): \[ (2)(2 - 1)(2 + 1) = (2)(1)(3) = 6 \quad (\text{positive}) \] ### Step 4: Combine results From the sign analysis, we find that \( x^3 - x > 0 \) in the intervals: - \( (-1, 0) \) - \( (1, \infty) \) ### Step 5: Exclude points from the domain Now we combine the intervals from both terms: - From \( \frac{3}{4 - x^2} \): \( x \neq 2, -2 \) - From \( \log_{10}(x^3 - x) \): \( x \in (-1, 0) \cup (1, \infty) \) Since \( -2 \) is not in the interval \( (-1, 0) \) and \( 2 \) is in \( (1, \infty) \), we exclude \( 2 \) from the domain. ### Final Domain The domain of \( f(x) \) is: \[ (-1, 0) \cup (1, 2) \cup (2, \infty) \] ### Conclusion Thus, the correct option is: (3) \( (-1, 0) \cup (1, 2) \cup (2, \infty) \)
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • LIMITS AND DERIVATIVES

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|5 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=sqrt(log_((|x|-1))(x^2+4x+4)) is (a) (-3,-1)uu(1,2) (b) (-2,-1)uu(2,oo) (c) (-oo,-3)uu(-2,-1)uu(2,oo) (d)none of these

The domain of f(x)="log"|logx|i s (0,oo) (b) (1,oo) (c) (0,1)uu(1,oo) (d) (-oo,1)

The domain of the function f(x)=(sin^(-1)(3-x))/(I n(|x|-2)i s (a) [2,4] (b) (2,3)uu(3,4] (c) (0,1)uu(1,oo) (d) (-oo,-3)uu(2,oo)

The domain of f(x)=cos^(-1)((2-|x|)/4)+[l log(3-x)]^1 is [-2,6] (b) [-6,2)uu(2,3) [-6,2] (d) [-2,2]uu(2,3)

The domain of f(x)=cos^(-1)((2-|x|)/4)+[ log(3-x)]^-1 is (a) [-2,6] (b) [-6,2)uu(2,3) (c) [-6,2] (d) [-2,2]uu(2,3)

The domain of f(x)=((log)_2(x+3))/(x^2+3x+2) is R-{-1,2} (b) (-2,oo) R-{-1,-2,-3} (d) (-3,oo)-(-1,-2}

Range of f(x) =1/(1-2cosx) is(i)[ 1/ 3 , 1 ] (ii) [-1,(1)/(3)] (iii) (-oo,-1)uu[(1)/(3),oo) (iv) [-(1)/(3),1]

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (1) (-oo,oo) (2) (0,oo (3) (-oo,""0) (4) (-oo,oo)"-"{0}

The domain of the following function is f(x)=(log)_2(-(log)_(1/2)(1+1/((x^(1/4)))-1) (0,1) (b) (0,1) (1,oo) (d) (1,oo)

If (x^2-7|x|+10)/(x^2-6x+9) a (-5,-2) b. (2,3) c. (3,5) d. (-5,-2)uu(2,3)uu(3,5)

JEE MAINS PREVIOUS YEAR ENGLISH-JEE MAINS-All Questions
  1. The mean and median of 10,22,26,29,34,x,42,67,70,y (in increasing orde...

    Text Solution

    |

  2. If y(x) satisfies the differential equation cosx (dy)/(dx)-y sinx =6x....

    Text Solution

    |

  3. The domain of f(x)=3/(4-x^2)+log(10) (x^3-x) (1) (-1,0)uu(1,2)uu(3,oo)...

    Text Solution

    |

  4. If the sum of first 3 terms of an A.P. is 33 and their product is 1155...

    Text Solution

    |

  5. Find the equations of the tangents to the ellipse 3x^(2)+4^(2)=12 whic...

    Text Solution

    |

  6. Consider f(x)=xsqrt(kx-x^(2)) for xepsilon [0, 3]. Let m be the smalle...

    Text Solution

    |

  7. Let S(n) denote the sum of the first n terms of an A.P.. If S(4)=16 an...

    Text Solution

    |

  8. If the volume of parallelopiped formed by the vectors hati+lamdahatj+h...

    Text Solution

    |

  9. If the line (x-2)/(3)=(y+1)/(2)=(z-1)/(-1) intersects the plane 2x+3y-...

    Text Solution

    |

  10. The derivative of tan^(-1) ((sinx -cosx)/(sinx +cosx)), with respect t...

    Text Solution

    |

  11. The angle of elevation of the loop of a vertical tower standing on a h...

    Text Solution

    |

  12. If the equation cos 2x+alpha sinx=2alpha-7 has a solution. Then range ...

    Text Solution

    |

  13. A plane which bisects the angle between the two given planes 2x - y +2...

    Text Solution

    |

  14. A plane electromagnetic wave of frequency 50 MHz travels in free space...

    Text Solution

    |

  15. Three charges +Q, q, +Q are placed respectively, at distance, 0, d...

    Text Solution

    |

  16. A copper wire is stretched to make it 0.5% longer. The percentage chan...

    Text Solution

    |

  17. A sample of radioactive material A, that has an activity of 10 mCi(1 C...

    Text Solution

    |

  18. In the given circuit the current through Zener Diode is close to :

    Text Solution

    |

  19. There are two long co-axial solenoids of same length l. The inner and ...

    Text Solution

    |

  20. If the deBroglie wavelenght of an electron is equal to 10^-3 times the...

    Text Solution

    |