In a certain region static electric and magentic fields exist. The magnetic field is given by `vec(B) = B_(0) (hat(i) + 2hat(j)-4hat(k))`. If a test charge moving with a velocity, `vec(upsilon) = upsilon_(0)(3hat(i)-hat(j) +2hat(k))` experience no force in that region, then the electric field in the region, in SI units, is-
In a certain region static electric and magentic fields exist. The magnetic field is given by `vec(B) = B_(0) (hat(i) + 2hat(j)-4hat(k))`. If a test charge moving with a velocity, `vec(upsilon) = upsilon_(0)(3hat(i)-hat(j) +2hat(k))` experience no force in that region, then the electric field in the region, in SI units, is-
A
`vec(E) = -upsilon_(0) B_(0)(hat(i) + hat(j) + 7hat(k))`
B
`vec(E) = -upsilon_(0)B_(0)(3hat(i) - 2hat(j) -4hat(k))`
C
`vec(E) = upsilon_(0)B_(0)(14hat(j) + 7 hat(k))`
D
`vec(E) = -upsilon_(0) B_(0) (14hat(j) + 7hat(k))`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we need to find the electric field \(\vec{E}\) in a region where a test charge experiences no force while moving in the presence of static electric and magnetic fields. The magnetic field \(\vec{B}\) and the velocity \(\vec{v}\) of the charge are given.
### Step-by-Step Solution:
1. **Identify the Given Vectors**:
- The magnetic field is given as:
\[
\vec{B} = B_0 (\hat{i} + 2\hat{j} - 4\hat{k})
\]
- The velocity of the test charge is given as:
\[
\vec{v} = v_0 (3\hat{i} - \hat{j} + 2\hat{k})
\]
2. **Use the Lorentz Force Equation**:
The force \(\vec{F}\) on a charge \(q\) moving in electric and magnetic fields is given by:
\[
\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})
\]
Since the test charge experiences no force, we have:
\[
\vec{E} + \vec{v} \times \vec{B} = 0
\]
Therefore:
\[
\vec{E} = -\vec{v} \times \vec{B}
\]
3. **Calculate the Cross Product \(\vec{v} \times \vec{B}\)**:
We need to compute the cross product:
\[
\vec{v} \times \vec{B} = v_0 (3\hat{i} - \hat{j} + 2\hat{k}) \times B_0 (\hat{i} + 2\hat{j} - 4\hat{k})
\]
Using the determinant form for the cross product:
\[
\vec{v} \times \vec{B} = v_0 B_0 \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
3 & -1 & 2 \\
1 & 2 & -4
\end{vmatrix}
\]
4. **Calculate the Determinant**:
Expanding the determinant:
\[
\vec{v} \times \vec{B} = v_0 B_0 \left( \hat{i} \begin{vmatrix} -1 & 2 \\ 2 & -4 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 2 \\ 1 & -4 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & -1 \\ 1 & 2 \end{vmatrix} \right)
\]
Calculating each of the 2x2 determinants:
- For \(\hat{i}\):
\[
\begin{vmatrix} -1 & 2 \\ 2 & -4 \end{vmatrix} = (-1)(-4) - (2)(2) = 4 - 4 = 0
\]
- For \(\hat{j}\):
\[
\begin{vmatrix} 3 & 2 \\ 1 & -4 \end{vmatrix} = (3)(-4) - (2)(1) = -12 - 2 = -14
\]
- For \(\hat{k}\):
\[
\begin{vmatrix} 3 & -1 \\ 1 & 2 \end{vmatrix} = (3)(2) - (-1)(1) = 6 + 1 = 7
\]
5. **Combine the Results**:
Thus, we have:
\[
\vec{v} \times \vec{B} = v_0 B_0 \left( 0 \hat{i} + 14 \hat{j} + 7 \hat{k} \right) = v_0 B_0 (0 \hat{i} - 14 \hat{j} + 7 \hat{k})
\]
6. **Find the Electric Field**:
Now substituting back into the equation for \(\vec{E}\):
\[
\vec{E} = -\vec{v} \times \vec{B} = -v_0 B_0 (0 \hat{i} - 14 \hat{j} + 7 \hat{k}) = v_0 B_0 (0 \hat{i} + 14 \hat{j} - 7 \hat{k})
\]
### Final Answer:
The electric field in the region is:
\[
\vec{E} = v_0 B_0 (0 \hat{i} + 14 \hat{j} - 7 \hat{k})
\]
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
In a region of space , suppose there exists a uniform electric field vec(E ) = 10 hat(i) ( V /m) . If a positive charge moves with a velocity vec(v ) = -2 hat(j) , its potential energy
Find the volume of the parallelopiped whose edges are represented by vec(a) = 2 hat(i) - 3 hat(j) + 4 hat(k) , vec(b) = hat(i) + 2 hat(j) - hat(k), vec(c) = 3 hat(i) - hat(j) + 2 hat(k)
A "bar" magnet of moment vec(M)=hat(i)+hat(j) is placed in a magnetic field induction vec(B)=3hat(i)+4hat(j)+4hat(k) . The torque acting on the magnet is
Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)
Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :
An electric field is given by vec(E)=(yhat(i)+xhat(j))N/C . Find the work done (in J) in moving a 1 C charge from vec(r)_(A)=(2hat(i)+2hat(j)) m to vec(r)_(B)=(4hat(i)+hat(j))m .
The displacement of a charge Q in the electric field vec(E) = e_(1)hat(i) + e_(2)hat(j) + e_(3) hat(k) is vec(r) = a hat(i) + b hat(j) . The work done is
A charged particle has acceleration vec a = 2 hat i + x hat j in a megnetic field vec B = - 3 hat i + 2 hat j - 4 hat k. Find the value of x.
A conductor AB of length l moves in x y plane with velocity vec(v) = v_(0)(hat(i)-hat(j)) . A magnetic field vec(B) = B_(0) (hat(i) + hat(j)) exists in the region. The induced emf is
If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is