What is the standard reduction potential `(E^(@))` for `Fe^(3+) to Fe`?
Given that :
`Fe^(2+) + 2e^(-) to Fe, E_(Fe^(2+)//Fe)^(@)`=-0.47V
`Fe^(3+) + e^(-) to Fe^(2+), E_(Fe^(3+)//Fe^(2+))^(@) = +0.77V`
What is the standard reduction potential `(E^(@))` for `Fe^(3+) to Fe`?
Given that :
`Fe^(2+) + 2e^(-) to Fe, E_(Fe^(2+)//Fe)^(@)`=-0.47V
`Fe^(3+) + e^(-) to Fe^(2+), E_(Fe^(3+)//Fe^(2+))^(@) = +0.77V`
Given that :
`Fe^(2+) + 2e^(-) to Fe, E_(Fe^(2+)//Fe)^(@)`=-0.47V
`Fe^(3+) + e^(-) to Fe^(2+), E_(Fe^(3+)//Fe^(2+))^(@) = +0.77V`
A
–0.057 V
B
+ 0.30 V
C
– 0.30 V
D
+ 0.057 V
Text Solution
AI Generated Solution
The correct Answer is:
To find the standard reduction potential \( E^\circ \) for the reaction \( \text{Fe}^{3+} + 3e^- \rightarrow \text{Fe} \), we will use the provided standard reduction potentials for the following half-reactions:
1. \( \text{Fe}^{2+} + 2e^- \rightarrow \text{Fe} \) with \( E^\circ = -0.47 \, \text{V} \)
2. \( \text{Fe}^{3+} + e^- \rightarrow \text{Fe}^{2+} \) with \( E^\circ = +0.77 \, \text{V} \)
### Step 1: Write the half-reactions
We have the following half-reactions:
- Reaction 1 (for \( \text{Fe}^{2+} \)):
\[
\text{Fe}^{2+} + 2e^- \rightarrow \text{Fe} \quad (E^\circ_1 = -0.47 \, \text{V})
\]
- Reaction 2 (for \( \text{Fe}^{3+} \)):
\[
\text{Fe}^{3+} + e^- \rightarrow \text{Fe}^{2+} \quad (E^\circ_2 = +0.77 \, \text{V})
\]
### Step 2: Combine the half-reactions
To find the overall reaction \( \text{Fe}^{3+} + 3e^- \rightarrow \text{Fe} \), we need to combine the two half-reactions. We will multiply the first reaction by 1 and the second reaction by 2 to balance the electrons:
1. \( \text{Fe}^{2+} + 2e^- \rightarrow \text{Fe} \) (multiplied by 1)
2. \( 2 \cdot (\text{Fe}^{3+} + e^- \rightarrow \text{Fe}^{2+}) \):
\[
2\text{Fe}^{3+} + 2e^- \rightarrow 2\text{Fe}^{2+}
\]
Now, we can add these reactions:
\[
\text{Fe}^{3+} + e^- \rightarrow \text{Fe}^{2+} \quad (E^\circ_2 = +0.77 \, \text{V})
\]
\[
\text{Fe}^{2+} + 2e^- \rightarrow \text{Fe} \quad (E^\circ_1 = -0.47 \, \text{V})
\]
### Step 3: Write the overall reaction
Adding these gives:
\[
\text{Fe}^{3+} + 3e^- \rightarrow \text{Fe}
\]
### Step 4: Calculate the overall standard reduction potential
The overall standard reduction potential \( E^\circ \) can be calculated using the formula:
\[
E^\circ_{\text{cell}} = E^\circ_2 + E^\circ_1
\]
Substituting the values:
\[
E^\circ_{\text{cell}} = (+0.77 \, \text{V}) + (-0.47 \, \text{V}) = +0.30 \, \text{V}
\]
### Step 5: Adjust for the number of electrons
However, we need to adjust for the total number of electrons transferred in the overall reaction. Since we are dealing with three electrons in total, we divide the total potential by 3:
\[
E^\circ_{\text{Fe}^{3+}/\text{Fe}} = \frac{E^\circ_{\text{cell}}}{3} = \frac{+0.30 \, \text{V}}{3} = +0.10 \, \text{V}
\]
### Final Answer
Thus, the standard reduction potential \( E^\circ \) for the reaction \( \text{Fe}^{3+} + 3e^- \rightarrow \text{Fe} \) is:
\[
E^\circ = +0.10 \, \text{V}
\]
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
What is the standard reducing potential (E^(@)) for Fe^(3+)to Fe ? (Given that Fe^(2+)+2e^(-)rightarrowFe, E_(Fe^(2+)//Fe^(@)) =-0.47V Fe^(3+) + e^(-)to Fe^(2+) , E_(Fe^(3+)//Fe^(2+))^(@)= +0.77V
Given that the standard reduction potentials E ^(0) of Fe^(+2)|Feis 0.26V and Fe ^(+3) |Fe is 0.76V respectively. The E ^(@)of Fe ^(+2)|Fe^(+3) is:
Show that E_(Fe^(+3)//Fe^(+2))^(@) =3E_(Fe^(+3)//Fe)^(@)-2E_(Fe^(+2)//Fe)^(@)
If E_(Fe^(3+)//Fe)^(@) and E_(Fe^(2+)//Fe)^(@) are -0.36 V and 0.439 V respectively, then value of E_(Fe^(3+)//Fe^(2+))^(@) is
Given that E_(Fe^(2+)//Fe)^(.)=-0.44V,E_(Fe^(3+)//Fe^(2+))^(@)=0.77V if Fe^(2+),Fe^(3+) and Fe solid are kept together then
What is the electrode potential Fe^(3+)//Fe electrode in which concentration of Fe^(3+) ions is 0.1M Given E^(@)Fe^(3+)//Fe=+0.771V
If E^(o)""_(Fe^(+2)//Fe) is x_(1),E^(o)""_(Fe ^(+3)//Fe) is x_(2), then E^(o) ""_(Fe^(+3)//Fe^(2+)) will be :
The standard reduction potentials at 298K for the following half cells are given : ZN^(2+)(aq)+ 2e^(-)Zn(s) , E^(@) = - 0.762V Cr^(3+)(aq)+ 3e^(-) Cr(s) , E^(@) = - 0.740V 2H^(+) (aq)+2e^(-) H_(2)(g) , E^(@)= 0.000V Fe^(3+)(aq)+ e^(-) Fe^(2+)(aq) , E^(@) = 0.770V which is the strongest reducing agent ?
(i) On the basis of the standard electrode potential values stated for acid solutions, predict whether Ti^(4+) species may be used to oxidise Fe(II) to Fe(III) {:(Ti^(4+) + e^(-) to Ti^(3+), E^(@) = +0.01V), (Fe^(3+) + e^(-) to Fe^(2+), E^(@)= +0.77V):} (ii) Based on the data arrange Fe^(3+), Mn^(2+) " and " Cr^(2+) in the increasing order of stability of +2 oxidation state. (Give a brief reason) E_(Cr^(3+)//Cr^(2+))^(@) = -0.4V E_(Mn^(3+)//Mn^(2+))^(@) = +1.5V E_(Fe^(3+)//Fe^(2+))^(@) = +0.8V
At equimolar concentration of Fe^(2+) and Fe^(3+) , what must [Ag^(+)] be so that the voltage of the galvanic cell made from the (Ag^(+) | Ag) and (Fe^(3+)|Fe^(2+) electrodes equals zero? Fe^(2+) + Ag^(+) rightarrow Fe^(3+) + Ag E_(Ag^(+), Ag)^(@) = 0.7991, E_(Fe^(3+)//Fe^(2+))^(@) = 0.771