Home
Class 12
PHYSICS
Let vecA=(hati+hatj)and,vecB=(2hati-hatj...

Let `vecA=(hati+hatj)and,vecB=(2hati-hatj)`. The magnitude of a coplanar vector `vecC` such that `vecA*vecC=vecB*vecC=vecA*vecB`, is given by :

A

`sqrt((9)/(12))`

B

`sqrt((5)/(9))`

C

`sqrt((20)/(9))`

D

`sqrt((10)/(9))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitude of a coplanar vector \(\vec{C}\) such that \(\vec{A} \cdot \vec{C} = \vec{B} \cdot \vec{C} = \vec{A} \cdot \vec{B}\). ### Step-by-Step Solution: 1. **Define the vectors**: \[ \vec{A} = \hat{i} + \hat{j} \] \[ \vec{B} = 2\hat{i} - \hat{j} \] 2. **Calculate \(\vec{A} \cdot \vec{B}\)**: \[ \vec{A} \cdot \vec{B} = (1)(2) + (1)(-1) = 2 - 1 = 1 \] Thus, \(\vec{A} \cdot \vec{B} = 1\). 3. **Assume the form of vector \(\vec{C}\)**: Let \(\vec{C} = x\hat{i} + y\hat{j}\). 4. **Calculate \(\vec{A} \cdot \vec{C}\)**: \[ \vec{A} \cdot \vec{C} = (\hat{i} + \hat{j}) \cdot (x\hat{i} + y\hat{j}) = x + y \] 5. **Calculate \(\vec{B} \cdot \vec{C}\)**: \[ \vec{B} \cdot \vec{C} = (2\hat{i} - \hat{j}) \cdot (x\hat{i} + y\hat{j}) = 2x - y \] 6. **Set up the equations**: Since \(\vec{A} \cdot \vec{C} = \vec{B} \cdot \vec{C} = \vec{A} \cdot \vec{B}\), we have: \[ x + y = 1 \quad \text{(1)} \] \[ 2x - y = 1 \quad \text{(2)} \] 7. **Solve the equations**: - From equation (1): \(y = 1 - x\). - Substitute \(y\) in equation (2): \[ 2x - (1 - x) = 1 \] \[ 2x - 1 + x = 1 \] \[ 3x - 1 = 1 \] \[ 3x = 2 \implies x = \frac{2}{3} \] 8. **Find \(y\)**: Substitute \(x\) back into equation (1): \[ y = 1 - \frac{2}{3} = \frac{1}{3} \] 9. **Magnitude of vector \(\vec{C}\)**: Now, we find the magnitude of \(\vec{C}\): \[ |\vec{C}| = \sqrt{x^2 + y^2} = \sqrt{\left(\frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)^2} \] \[ = \sqrt{\frac{4}{9} + \frac{1}{9}} = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3} \] ### Final Answer: The magnitude of vector \(\vec{C}\) is \(\frac{\sqrt{5}}{3}\).
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise Chemistry|1 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|452 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise PHYSICS|250 Videos

Similar Questions

Explore conceptually related problems

Let veca=hati-2hatj+hatkand vecb=hati-hatj+hatk be two vectors. If vecc is a vector such that vecbxxvecc=vecbxxveca and vecc*veca=0, theat vecc*vecb is equal to:

Let veca=2hati-hatj+3hatk, vecb=hati+hatj-4hatk and non - zero vector vecc are such that (veca xx vecb)xx vecc =veca xx(vecb xx vecc) , then vector vecc may be

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If veca=hati+hatj+hatk and vecb=hatj-hatk find a vector vecc such that vecaxxvecc=vecb and veca.vecc=3 .

Let veca=hati-hatj,vecb=hati+hatj+hatk and vecc be a vector such that vecaxxvecc+vecb=vec0 and veca.vecc=4 , then |vecc|^(2) is equal to:

Let veca = hati + hatj +hatjk, vecc =hatj - hatk and a vector vecb be such that veca xx vecb = vecc and veca.vecb=3 . Then |vecb| equals:

veca=2hati+hatj+2hatk, vecb=hati-hatj+hatk and non zero vector vecc are such that (veca xx vecb) xx vecc = veca xx (vecb xx vecc) . Then vector vecc may be given as

Let veca=2hati+hatj-2hatk and vecb=hati+hatj . Let vecc be a vector such that |vecc-veca|=3,|(vecaxxvecb)xxvecc| = 3 and the angle between vecc and veca xx vecb is 30^@ Find veca.vecc

Let veca=hati+2hatj and vecb=2hati+hatj. Is |veca|=|vecb| Are the vectors veca and vecb equal?.

Let veca=hati-hatj, vecb=hatj-hatk, vecc=hatk-hati. If hatd is a unit vector such that veca.hatd=0=[vecb vecc vecd] then hatd equals