Let `vecA=(hati+hatj)and,vecB=(2hati-hatj)`. The magnitude of a coplanar vector `vecC` such that `vecA*vecC=vecB*vecC=vecA*vecB`, is given by :
A
`sqrt((9)/(12))`
B
`sqrt((5)/(9))`
C
`sqrt((20)/(9))`
D
`sqrt((10)/(9))`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we need to find the magnitude of a coplanar vector \(\vec{C}\) such that \(\vec{A} \cdot \vec{C} = \vec{B} \cdot \vec{C} = \vec{A} \cdot \vec{B}\).
### Step-by-Step Solution:
1. **Define the vectors**:
\[
\vec{A} = \hat{i} + \hat{j}
\]
\[
\vec{B} = 2\hat{i} - \hat{j}
\]
2. **Calculate \(\vec{A} \cdot \vec{B}\)**:
\[
\vec{A} \cdot \vec{B} = (1)(2) + (1)(-1) = 2 - 1 = 1
\]
Thus, \(\vec{A} \cdot \vec{B} = 1\).
3. **Assume the form of vector \(\vec{C}\)**:
Let \(\vec{C} = x\hat{i} + y\hat{j}\).
4. **Calculate \(\vec{A} \cdot \vec{C}\)**:
\[
\vec{A} \cdot \vec{C} = (\hat{i} + \hat{j}) \cdot (x\hat{i} + y\hat{j}) = x + y
\]
5. **Calculate \(\vec{B} \cdot \vec{C}\)**:
\[
\vec{B} \cdot \vec{C} = (2\hat{i} - \hat{j}) \cdot (x\hat{i} + y\hat{j}) = 2x - y
\]
6. **Set up the equations**:
Since \(\vec{A} \cdot \vec{C} = \vec{B} \cdot \vec{C} = \vec{A} \cdot \vec{B}\), we have:
\[
x + y = 1 \quad \text{(1)}
\]
\[
2x - y = 1 \quad \text{(2)}
\]
7. **Solve the equations**:
- From equation (1): \(y = 1 - x\).
- Substitute \(y\) in equation (2):
\[
2x - (1 - x) = 1
\]
\[
2x - 1 + x = 1
\]
\[
3x - 1 = 1
\]
\[
3x = 2 \implies x = \frac{2}{3}
\]
8. **Find \(y\)**:
Substitute \(x\) back into equation (1):
\[
y = 1 - \frac{2}{3} = \frac{1}{3}
\]
9. **Magnitude of vector \(\vec{C}\)**:
Now, we find the magnitude of \(\vec{C}\):
\[
|\vec{C}| = \sqrt{x^2 + y^2} = \sqrt{\left(\frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)^2}
\]
\[
= \sqrt{\frac{4}{9} + \frac{1}{9}} = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3}
\]
### Final Answer:
The magnitude of vector \(\vec{C}\) is \(\frac{\sqrt{5}}{3}\).
Topper's Solved these Questions
JEE MAINS
JEE MAINS PREVIOUS YEAR ENGLISH|Exercise Chemistry|1 Videos
JEE MAIN
JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|452 Videos
JEE MAINS 2020
JEE MAINS PREVIOUS YEAR ENGLISH|Exercise PHYSICS|250 Videos
Similar Questions
Explore conceptually related problems
Let veca=hati-2hatj+hatkand vecb=hati-hatj+hatk be two vectors. If vecc is a vector such that vecbxxvecc=vecbxxveca and vecc*veca=0, theat vecc*vecb is equal to:
Let veca=2hati-hatj+3hatk, vecb=hati+hatj-4hatk and non - zero vector vecc are such that (veca xx vecb)xx vecc =veca xx(vecb xx vecc) , then vector vecc may be
If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .
If veca=hati+hatj+hatk and vecb=hatj-hatk find a vector vecc such that vecaxxvecc=vecb and veca.vecc=3 .
Let veca=hati-hatj,vecb=hati+hatj+hatk and vecc be a vector such that vecaxxvecc+vecb=vec0 and veca.vecc=4 , then |vecc|^(2) is equal to:
Let veca = hati + hatj +hatjk, vecc =hatj - hatk and a vector vecb be such that veca xx vecb = vecc and veca.vecb=3 . Then |vecb| equals:
veca=2hati+hatj+2hatk, vecb=hati-hatj+hatk and non zero vector vecc are such that (veca xx vecb) xx vecc = veca xx (vecb xx vecc) . Then vector vecc may be given as
Let veca=2hati+hatj-2hatk and vecb=hati+hatj . Let vecc be a vector such that |vecc-veca|=3,|(vecaxxvecb)xxvecc| = 3 and the angle between vecc and veca xx vecb is 30^@ Find veca.vecc
Let veca=hati+2hatj and vecb=2hati+hatj. Is |veca|=|vecb| Are the vectors veca and vecb equal?.
Let veca=hati-hatj, vecb=hatj-hatk, vecc=hatk-hati. If hatd is a unit vector such that veca.hatd=0=[vecb vecc vecd] then hatd equals
JEE MAINS PREVIOUS YEAR ENGLISH-JEE MAINS-Chemistry