Home
Class 12
PHYSICS
In a certain region static electric and ...

In a certain region static electric and magentic fields exist. The magnetic field is given by `vec(B) = B_(0) (hat(i) + 2hat(j)-4hat(k))`. If a test charge moving with a velocity, `vec(upsilon) = upsilon_(0)(3hat(i)-hat(j) +2hat(k))` experience no force in that region, then the electric field in the region, in SI units, is-

A

`vecE=-u_(0)B_(0)(hati +hatj+7hatk)`

B

`vecE=-u_(0)B_(0)(3hati -3hatj-4hatk)`

C

`vecE=u_(0)B_(0)(14hatj+7hatk)`

D

`vecE=-u_(0)B_(0)(14hatj + 7hatk)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the electric field \( \vec{E} \) in a region where a test charge experiences no force while moving through a magnetic field \( \vec{B} \). The magnetic field and the velocity of the charge are given, and we will use the Lorentz force equation to find the electric field. ### Step-by-step Solution: 1. **Understanding the Lorentz Force Equation**: The total force \( \vec{F} \) on a charge \( q \) moving with velocity \( \vec{v} \) in electric field \( \vec{E} \) and magnetic field \( \vec{B} \) is given by: \[ \vec{F} = q(\vec{E} + \vec{v} \times \vec{B}) \] Since the charge experiences no force, we have: \[ \vec{E} + \vec{v} \times \vec{B} = 0 \] Therefore, we can express the electric field as: \[ \vec{E} = -\vec{v} \times \vec{B} \] 2. **Substituting the Given Values**: The magnetic field is given by: \[ \vec{B} = B_0 (\hat{i} + 2\hat{j} - 4\hat{k}) \] The velocity of the charge is: \[ \vec{v} = v_0 (3\hat{i} - \hat{j} + 2\hat{k}) \] 3. **Calculating the Cross Product \( \vec{v} \times \vec{B} \)**: To find \( \vec{v} \times \vec{B} \), we set up the determinant: \[ \vec{v} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3v_0 & -v_0 & 2v_0 \\ B_0 & 2B_0 & -4B_0 \end{vmatrix} \] Expanding this determinant: \[ \vec{v} \times \vec{B} = \hat{i} \begin{vmatrix} -v_0 & 2v_0 \\ 2B_0 & -4B_0 \end{vmatrix} - \hat{j} \begin{vmatrix} 3v_0 & 2v_0 \\ B_0 & -4B_0 \end{vmatrix} + \hat{k} \begin{vmatrix} 3v_0 & -v_0 \\ B_0 & 2B_0 \end{vmatrix} \] Calculating each of these determinants: - For \( \hat{i} \): \[ -v_0(-4B_0) - 2v_0(2B_0) = 4v_0B_0 - 4v_0B_0 = 0 \] - For \( \hat{j} \): \[ 3v_0(-4B_0) - 2v_0B_0 = -12v_0B_0 - 2v_0B_0 = -14v_0B_0 \] - For \( \hat{k} \): \[ 3v_0(2B_0) - (-v_0B_0) = 6v_0B_0 + v_0B_0 = 7v_0B_0 \] Thus, we have: \[ \vec{v} \times \vec{B} = 0\hat{i} + 14v_0B_0\hat{j} + 7v_0B_0\hat{k} \] 4. **Finding the Electric Field**: Now substituting back into the equation for \( \vec{E} \): \[ \vec{E} = -\vec{v} \times \vec{B} = -\left(0\hat{i} - 14v_0B_0\hat{j} + 7v_0B_0\hat{k}\right) \] Therefore, \[ \vec{E} = 0\hat{i} + 14v_0B_0\hat{j} - 7v_0B_0\hat{k} \] 5. **Final Result**: The electric field in the region is: \[ \vec{E} = 14v_0B_0\hat{j} - 7v_0B_0\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise Chemistry|1 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|452 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise PHYSICS|250 Videos

Similar Questions

Explore conceptually related problems

In a region of space , suppose there exists a uniform electric field vec(E ) = 10 hat(i) ( V /m) . If a positive charge moves with a velocity vec(v ) = -2 hat(j) , its potential energy

Find the volume of the parallelopiped whose edges are represented by vec(a) = 2 hat(i) - 3 hat(j) + 4 hat(k) , vec(b) = hat(i) + 2 hat(j) - hat(k), vec(c) = 3 hat(i) - hat(j) + 2 hat(k)

A "bar" magnet of moment vec(M)=hat(i)+hat(j) is placed in a magnetic field induction vec(B)=3hat(i)+4hat(j)+4hat(k) . The torque acting on the magnet is

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

An electric field is given by vec(E)=(yhat(i)+xhat(j))N/C . Find the work done (in J) in moving a 1 C charge from vec(r)_(A)=(2hat(i)+2hat(j)) m to vec(r)_(B)=(4hat(i)+hat(j))m .

The displacement of a charge Q in the electric field vec(E) = e_(1)hat(i) + e_(2)hat(j) + e_(3) hat(k) is vec(r) = a hat(i) + b hat(j) . The work done is

A charged particle has acceleration vec a = 2 hat i + x hat j in a megnetic field vec B = - 3 hat i + 2 hat j - 4 hat k. Find the value of x.

A conductor AB of length l moves in x y plane with velocity vec(v) = v_(0)(hat(i)-hat(j)) . A magnetic field vec(B) = B_(0) (hat(i) + hat(j)) exists in the region. The induced emf is

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is