Calculate the enthalpy change of freezing of `1.0` mol of water at `10^(@)C` to ice at `-10^(@)C, Delta_(fus)H=6.03 kJ mol^(-1)` at `0^(@)C`.
`C_(P)[H_(2)O(l)]=75.3 J mol^(-1) K^(-1)`
`C_(P)[H_(2)O(s)]=36.8 J mol^(-1) K^(-1)`
Calculate the enthalpy change of freezing of `1.0` mol of water at `10^(@)C` to ice at `-10^(@)C, Delta_(fus)H=6.03 kJ mol^(-1)` at `0^(@)C`.
`C_(P)[H_(2)O(l)]=75.3 J mol^(-1) K^(-1)`
`C_(P)[H_(2)O(s)]=36.8 J mol^(-1) K^(-1)`
`C_(P)[H_(2)O(l)]=75.3 J mol^(-1) K^(-1)`
`C_(P)[H_(2)O(s)]=36.8 J mol^(-1) K^(-1)`
A
`-7.151 KJ "mol^(-1)`
B
`5.81 KJ "mol"^(-1)`
C
`5.44 KJ "mol"^(-1)`
D
`-6.56 KJ "mol"^(-1)`
Text Solution
AI Generated Solution
The correct Answer is:
To calculate the enthalpy change of freezing of `1.0` mol of water at `10°C` to ice at `-10°C`, we will consider three steps involved in the process:
1. Cooling the liquid water from `10°C` to `0°C`.
2. Freezing the water at `0°C` to ice at `0°C`.
3. Cooling the ice from `0°C` to `-10°C`.
### Step 1: Calculate ΔH1 (Cooling water from 10°C to 0°C)
We use the formula:
\[
\Delta H_1 = C_p \times \Delta T
\]
Where:
- \(C_p\) for liquid water = `75.3 J mol^{-1} K^{-1}`
- \(\Delta T = T_{final} - T_{initial} = 0°C - 10°C = -10 K\)
Calculating ΔH1:
\[
\Delta H_1 = 75.3 \, \text{J mol}^{-1} \, \text{K}^{-1} \times (-10 \, \text{K}) = -753 \, \text{J mol}^{-1}
\]
### Step 2: Calculate ΔH2 (Freezing at 0°C)
The enthalpy change for freezing is the negative of the enthalpy of fusion:
\[
\Delta H_2 = -\Delta_{fus}H
\]
Where:
- \(\Delta_{fus}H = 6.03 \, \text{kJ mol}^{-1} = 6030 \, \text{J mol}^{-1}\)
Calculating ΔH2:
\[
\Delta H_2 = -6030 \, \text{J mol}^{-1}
\]
### Step 3: Calculate ΔH3 (Cooling ice from 0°C to -10°C)
We again use the formula:
\[
\Delta H_3 = C_p \times \Delta T
\]
Where:
- \(C_p\) for solid water = `36.8 J mol^{-1} K^{-1}`
- \(\Delta T = -10°C - 0°C = -10 K\)
Calculating ΔH3:
\[
\Delta H_3 = 36.8 \, \text{J mol}^{-1} \, \text{K}^{-1} \times (-10 \, \text{K}) = -368 \, \text{J mol}^{-1}
\]
### Total Enthalpy Change (ΔH_total)
Now, we sum up all the enthalpy changes:
\[
\Delta H_{total} = \Delta H_1 + \Delta H_2 + \Delta H_3
\]
Substituting the values:
\[
\Delta H_{total} = (-753 \, \text{J mol}^{-1}) + (-6030 \, \text{J mol}^{-1}) + (-368 \, \text{J mol}^{-1})
\]
Calculating:
\[
\Delta H_{total} = -753 - 6030 - 368 = -7151 \, \text{J mol}^{-1}
\]
### Convert to kJ/mol
To convert to kJ/mol:
\[
\Delta H_{total} = -7151 \, \text{J mol}^{-1} \times \frac{1 \, \text{kJ}}{1000 \, \text{J}} = -7.151 \, \text{kJ mol}^{-1}
\]
### Final Answer
The enthalpy change of freezing of `1.0` mol of water at `10°C` to ice at `-10°C` is:
\[
\Delta H_{total} = -7.151 \, \text{kJ mol}^{-1}
\]
---
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
Calcualte the enthalpy change on freezing of 1.0 mole of water at 10.0^(@)C to ice at -10^(@) C. Delta_(fs)H=6.03 kJ mol^(-1) at 0^(@)C . C_(p)[H_(2)O(l)] = 75.3 J mol^(-1) K^(-1), C_(P)[H_(2)O(s)] = 36.8 Jmol^(-1)K^(-1)
Calculate the entropy change for vaporization of 1mol of liquid water to steam at 100^(@)C , if Delta_(V)H = 40.8 kJ mol^(-1) .
Predict the standard reaction enthalpy of 2NO_(2)(g)rarrN_(2)O_(4)(g) at 100^(@)C . Delta H^(@) at 25^(@)C is -57.2 kj.mol^(-1)C_(p)(NO_(2))=37.2j.mol^(-1)K^(-1)C_(p)(N_(2)O_(4))=77.28 J. mol^(-1)k^(-1)
Calculate the standard free energy change for the reaction: H_(2)(g) +I_(2)(g) rarr 2HI(g), DeltaH^(Theta) = 51.9 kJ mol^(-1) Given: S^(Theta) (H_(2)) = 130.6 J K^(-1) mol^(-1) , S^(Theta) (I_(2)) = 116.7 J K^(-1) mol^(-1) and S^(Theta) (HI) = 206.8 J K^(-1) mol^(-1) .
Calculate the standard free energy change for the reaction: H_(2)(g) +I_(2)(g) rarr 2HI(g), DeltaH^(Theta) = 51.9 kJ mol^(-1) Given: S^(Theta) (H_(2)) = 130.6 J K^(-1) mol^(-1) , S^(Theta) (I_(2)) = 116.7 J K^(-1) mol^(-1) and S^(Theta) (HI) =- 206.8 J K^(-1) mol^(-1) .
Calculated the Gibbs energy change on dissolving one mole of sodium chloride at 25^(@)C . Lattice =+ 777.0 kJ mol^(-1) Hydration of NaCI =- 774.0 kJ mol^(-1) DeltaS at 25^(@)C = 40 J K^(-1) mol^(-1)
Calculate the entropy change accompanying the following change of state H_(2)O (s, 10^(@)C, 1 atm) rarr H_(2)O(l, 10^(@)C, 1atm) C_(P) for ice = 9 cla deg^(-1) mol^(-1) C_(P) for H_(2)O = 18 cal deg^(-1) mol^(-1) Latent heat of fustion of ice = 1440 cal mol^(-1) at 0^(@)C .
Calculate the entropy change accompanying the following change of state H_(2)O (s, -10^(@)C, 1 atm) rarr H_(2)O(l, 10^(@)C, 1atm) C_(P) for ice = 9 cal deg^(-1) mol^(-1) C_(P) for H_(2)O = 18 cal deg^(-1) mol^(-1) Latent heat of fustion of ice = 1440 cal mol^(-1) at 0^(@)C .
Find the entropy change when 90 g of H_(2)O at 10^(@) C was converted into steam at 100^(@) C. [ Given C_(P)(H_(2)O)=75.29 JK^(-1)mol^(-1) and Delta H_("vap")=43.932 JK^(-1)mol^(-1) ]
Calculate the enthalpy change for the process C Cl_(4)(g) rarr C(g)+4Cl(g) and calculate bond enthalpy of C-Cl in C Cl_(4)(g) . Delta_(vap)H^(Θ)(C Cl_(4))=30.5 kJ mol^(-1) Delta_(f)H^(Θ)(C Cl_(4))=-135.5 kJ mol^(-1) Delta_(a)H^(Θ)(C )=715.0 kJ mol^(-1) , where Delta_(a)H^(Θ) is enthalpy of atomisation Delta_(a)H^(Θ)(Cl_(2))=242 kJ mol^(-1)