Home
Class 12
CHEMISTRY
Given C(("graphite"))+O(2)(g)toCO(2)(g),...

Given `C_(("graphite"))+O_(2)(g)toCO_(2)(g),`
`Delta_(r)H^(0)=-393.5kJ" "mol^(-1)`
`H_(2)(g)=+(1)/(2)O_(2)(g)toH_(2)O(1),`
`Delta_(r)H^(0)=-285.8" kJ "mol^(-1)`
`CO_(2)(g)+2H_(2)O(1)toCH_(4)(g)+2O_(2)(g)`,
`Delta_(r)H^(0)=+890.3kJ" "mol^(-1)`
Based on the above thermochemical equations, the value of `Delta_(r)H^(0)` at at 298 K for the reaction
`C_(("graphite"))+2H_(2)(g)toCH_(4)(g)` will be:

A

+144kj/mol

B

-74.8kj/mol

C

-144kj/mol

D

+74.8kj/mol

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \Delta_r H^{0} \) at 298 K for the reaction \[ C_{\text{(graphite)}} + 2H_2(g) \to CH_4(g) \] we will use the provided thermochemical equations and apply Hess's law. ### Step 1: Write down the given reactions and their enthalpy changes. 1. \( C_{\text{(graphite)}} + O_2(g) \to CO_2(g) \) \( \Delta_r H^{0} = -393.5 \, \text{kJ/mol} \) (Equation 1) 2. \( H_2(g) + \frac{1}{2}O_2(g) \to H_2O(l) \) \( \Delta_r H^{0} = -285.8 \, \text{kJ/mol} \) (Equation 2) 3. \( CO_2(g) + 2H_2O(l) \to CH_4(g) + 2O_2(g) \) \( \Delta_r H^{0} = +890.3 \, \text{kJ/mol} \) (Equation 3) ### Step 2: Manipulate the reactions to derive the target reaction. To derive the target reaction \( C_{\text{(graphite)}} + 2H_2(g) \to CH_4(g) \), we will manipulate the given reactions as follows: - **From Equation 1**, we keep it as is: \[ C_{\text{(graphite)}} + O_2(g) \to CO_2(g) \quad \text{(1)} \] - **From Equation 2**, we need to multiply it by 2 to match the 2 moles of \( H_2 \) in our target reaction: \[ 2H_2(g) + O_2(g) \to 2H_2O(l) \quad \Delta_r H^{0} = 2 \times (-285.8) = -571.6 \, \text{kJ/mol} \quad \text{(2)} \] - **From Equation 3**, we reverse the reaction to get \( CH_4(g) \) on the left side: \[ CH_4(g) + 2O_2(g) \to CO_2(g) + 2H_2O(l) \quad \Delta_r H^{0} = -890.3 \, \text{kJ/mol} \quad \text{(3)} \] ### Step 3: Combine the manipulated equations. Now we will add the manipulated equations: 1. \( C_{\text{(graphite)}} + O_2(g) \to CO_2(g) \) (from Equation 1) 2. \( 2H_2(g) + O_2(g) \to 2H_2O(l) \) (from Equation 2) 3. \( CH_4(g) + 2O_2(g) \to CO_2(g) + 2H_2O(l) \) (from Equation 3) Combining these, we have: \[ C_{\text{(graphite)}} + 2H_2(g) + O_2(g) \to CO_2(g) + 2H_2O(l) + CH_4(g) + 2O_2(g) \] Now, cancel out the common species: - \( O_2(g) \) and \( CO_2(g) \) cancel out. This gives us: \[ C_{\text{(graphite)}} + 2H_2(g) \to CH_4(g) \] ### Step 4: Calculate \( \Delta_r H^{0} \) for the target reaction. Now we can calculate \( \Delta_r H^{0} \) for the target reaction: \[ \Delta_r H^{0} = (-393.5) + (-571.6) + (-890.3) \] Calculating this gives: \[ \Delta_r H^{0} = -393.5 - 571.6 - 890.3 = -1855.4 \, \text{kJ/mol} \] ### Step 5: Final calculation Now we need to add the enthalpy changes: \[ \Delta_r H^{0} = -393.5 + (-571.6) + 890.3 \] Calculating this: \[ = -393.5 - 571.6 + 890.3 = -74.8 \, \text{kJ/mol} \] ### Final Answer Thus, the value of \( \Delta_r H^{0} \) at 298 K for the reaction \( C_{\text{(graphite)}} + 2H_2(g) \to CH_4(g) \) is: \[ \Delta_r H^{0} = -74.8 \, \text{kJ/mol} \] ---
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise QUESTION|1 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise CHEMISTRY|146 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise CHEMSITRY|23 Videos

Similar Questions

Explore conceptually related problems

Given : (i) C("graphite") +O_2(g)toCO_2(g)DeltarH^(Theta)="x kj "mol^(-1) (ii) C("graphite") +(1)/(2)O_2(g)toCO(g),DeltarH^(Theta)="y kj "mol^(-1) (iii) CO(g) +(1)/(2)O_2(g) toCO_2(g),DeltarH^(theta)="zkj" mol^(-1) Based on the above thermochemical equations, find out which one of the following algebraic relationships is correct ?

Calculate enthalpy of formation of methane (CH_4) from the following data : (i) C(s) + O_(2)(g) to CO_(2) (g) , Delta_rH^(@) = -393.5 KJ mol^(-1) (ii) H_2(g) + 1/2 O_(2)(g) to H_(2)O(l) , Deta_r H^(@) = -285.5 kJ mol^(-1) (iii) CH_(4)(g) + 2O_(2)(g) to CO_(2)(g) + 2H_(2)O(l), Delta_(r)H^(@) = -890.3 kJ mol^(-1) .

Comment on the thermodynamic stability of NO(g) , given 1/2N_(2)(g)+1/2O_(2)(g)rarr NO(g), Delta_(r)H^(Θ)=90 kJ mol^(-1) NO(g)+1/2O_(2)(g) rarr NO_(2)(g), Delta_(r)H^(Θ)=-74 kJ mol^(-1)

Given that : C(s)+O_(2)(g)to CO_(2)(g) , Delta H = -394 kJ and 2H_(2)(g)+O_(2)(g)to 2H_(2)O(l) , Delta H =- 568 kJ and C_(2)H_(5)OH(l)+3O_(2)(g)to 2CO_(2)(g)+3H_(2)O(l) , Delta H =- 1058 kJ/mole. Using the data, the heat of formation of ethanol is

C(s)+(1)/(2)O_(2)(g)to CO(g), Delta H =- 42 kJ/mole CO(g)+(1)/(2)O_(2)(g)to CO_(2)(g) , Delta H =-24 kJ/mole The heat of formation of CO_(2) is

Given that: 2C(s)+O_(2)(g)to2CO_(2)(g)" "(DeltaH=-787kJ) . . . (i) H_(2)(g)+1//2O_(2)(g)toH_(2)O(l)" "(DeltaH=-286kJ) . . . (ii) C_(2)H_(2)+2(1)/(2)O_(2)(g)to2CO_(2)(g)+H_(2)O(l)" "(DeltaH=-1310kJ) . . .(iii) The heat of formation of acetylene is:

The enthalpy of vaporisation of liquid water using the data H_(2)(g)+(1)/(2)O_(2)(g)toH_(2)O(l) , DeltaH=-285.77 kJ//mol H_(2)(g)+(1)/(2)O_(2)(g)toH_(2)O(g) , DeltaH=-241.84 kJ//mol

H_(2)(g) +(1)/(2)O_(2)(g) rarr H_(2)O(g) DeltaH =- 242 kJ mol^(-1) Bond energy of H_(2) and O_(2) is 436 and 500 kJ mol^(-1) , respectively. What is bond energy of O-H bond?

{:(C+O_(2)(g)rarrCO_(2)" ......(i),",DeltaH=-"393 kJ mol"^(-1)),(H_(2)+1//2O_(2)rarr H_(2)O", .....(ii)",DeltaH=-"287.3 kJ mol"^(-1)),(2CO_(2)+3H_(2)O rarr C_(2)H_(5)OH+2O_(2)" .....(iii)",DeltaH="1366.8 kJ mol"^(-1)):} Find the standard enthalpy of formation of C_(2)H_(5)OH(l)

Calculate the heat of formation of methane in kcalmol^(-1) using the following thermo chemical reactions C(s)+O_(2)toCO_(2)(g) , DeltaH=-94.2 kcal mol^(-1) H_(2)(g)+1/2O_(2)(g)toH_(2)O(l) , DeltaH=-68.3 kcal mol^(-1) CH_(4)(g)+2O_(2)(g)toCO_(2)(g)+2H_(2)O(l) , DeltaH=-210.8 kcal mol^(-1)