Home
Class 12
MATHS
Let f(x) = x cos^(-1)(-sin|x|), x in (-...

Let `f(x) = x cos^(-1)(-sin|x|)`, `x in (-pi/2,pi/2)`

A

`f(0) = - pi/2`

B

f'(x) is not defined at x = 0

C

f'(x) is increasing in `( -pi/2, 0)` and f'(x) is decreasing in `(0, pi/2)`

D

f'(x) is decreasing in `( -pi/2, 0)` and f'(x) is increasing in `(0, pi/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will analyze the function \( f(x) = x \cos^{-1}(-\sin |x|) \) for \( x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \). ### Step 1: Simplify the Function We start with the function: \[ f(x) = x \cos^{-1}(-\sin |x|) \] Using the property of the inverse cosine function, we know: \[ \cos^{-1}(-x) = \pi - \cos^{-1}(x) \] Thus, we can rewrite \( f(x) \) as: \[ f(x) = x \left( \pi - \cos^{-1}(\sin |x|) \right) \] This simplifies to: \[ f(x) = x \pi - x \cos^{-1}(\sin |x|) \] ### Step 2: Analyze \( \cos^{-1}(\sin |x|) \) Next, we need to analyze \( \cos^{-1}(\sin |x|) \). Since \( |x| \) is non-negative in the interval \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \), we can consider two cases based on the sign of \( x \). 1. **Case 1: \( x \in \left(-\frac{\pi}{2}, 0\right) \)** Here, \( |x| = -x \), so: \[ f(x) = x \pi - x \cos^{-1}(\sin(-x)) = x \pi - x \cos^{-1}(-\sin x) \] Using the property \( \cos^{-1}(-x) = \pi - \cos^{-1}(x) \): \[ f(x) = x \pi - x \left( \pi - \cos^{-1}(\sin x) \right) = x \cos^{-1}(\sin x) \] 2. **Case 2: \( x \in \left(0, \frac{\pi}{2}\right) \)** Here, \( |x| = x \), so: \[ f(x) = x \cos^{-1}(\sin x) \] ### Step 3: Combine Cases Thus, we can express \( f(x) \) as: \[ f(x) = \begin{cases} x \cos^{-1}(\sin x) & \text{if } x > 0 \\ x \cos^{-1}(\sin(-x)) & \text{if } x < 0 \end{cases} \] ### Step 4: Differentiate the Function Now, we will differentiate \( f(x) \). 1. **For \( x \in \left(-\frac{\pi}{2}, 0\right) \)**: \[ f'(x) = \cos^{-1}(\sin x) + x \cdot \frac{d}{dx}(\cos^{-1}(\sin x)) \] Using the chain rule: \[ \frac{d}{dx}(\cos^{-1}(\sin x)) = -\frac{\cos x}{\sqrt{1 - \sin^2 x}} = -\frac{\cos x}{\cos x} = -1 \] Thus, \[ f'(x) = \cos^{-1}(\sin x) - x \] 2. **For \( x \in \left(0, \frac{\pi}{2}\right) \)**: \[ f'(x) = \cos^{-1}(\sin x) + x \cdot \frac{d}{dx}(\cos^{-1}(\sin x)) = \cos^{-1}(\sin x) - x \] ### Step 5: Analyze Increasing/Decreasing Behavior - **For \( x < 0 \)**: \( f'(x) < 0 \) when \( \cos^{-1}(\sin x) < x \) (decreasing). - **For \( x > 0 \)**: \( f'(x) > 0 \) when \( \cos^{-1}(\sin x) > x \) (increasing). ### Conclusion The function \( f(x) \) is: - Decreasing on \( \left(-\frac{\pi}{2}, 0\right) \) - Increasing on \( \left(0, \frac{\pi}{2}\right) \)

To solve the problem, we will analyze the function \( f(x) = x \cos^{-1}(-\sin |x|) \) for \( x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \). ### Step 1: Simplify the Function We start with the function: \[ f(x) = x \cos^{-1}(-\sin |x|) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve cos 2x=|sin x|, x in (-pi/2, pi) .

Solve cos 2x=|sin x|, x in (-pi/2, pi) .

Let f(x)=|x|+|sin x|, x in (-pi//2,pi//2). Then, f is

Let f(x) = sin^(-1) x + cos^(-1) x ". Then " pi/2 is equal to

Let f(x) = tan x, x in (-pi/2,pi/2)and g(x) = sqrt(1-x^2) then g(f(x)) is

let f(x)=e^(cos^(-1)sin(x + pi/3)) then f((8pi)/9) and f((-7pi)/4)

The number of points where f(x) = max {|sin x| , | cos x|} , x in ( -2 pi , 2 pi ) is not differentiable is ______

Let f(x)=sinx+2cos^2x , x in [pi/6,(2pi)/3] , then maximum value of f(x) is

which of the following statement is // are true ? (i) f(x) =sin x is increasing in interval [(-pi)/(2),(pi)/(2)] (ii) f(x) = sin x is increasing at all point of the interval [(-pi)/(2),(pi)/(2)] (3) f(x) = sin x is increasing in interval ((-pi)/(2),(pi)/(2)) UU ((3pi)/(2),(5pi)/(2)) (4) f(x)=sin x is increasing at all point of the interval ((-pi)/(2),(pi)/(2)) UU ((3pi)/(2),(5pi)/(2)) (5) f(x) = sin x is increasing in intervals [(-pi)/(2),(pi)/(2)]& [(3pi)/(2),(5pi)/(2)]

Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):} . If f is continuous on [-pi, pi) , then find the values of a and b .