Home
Class 12
MATHS
If volume of parallelopiped whose there ...

If volume of parallelopiped whose there coterminous edges are `vec u = hat i + hat j + lambda hat k, vec v = 2 hati + hat j + hatk, vecw = hati+hatj+3hatk`, is 1 cubic unit then cosine of angle between `vec u` and `vecv` is

A

`7/(3sqrt10)`

B

`7/(6sqrt3)`

C

`5/(3sqrt3)`

D

`5/7`

Text Solution

AI Generated Solution

The correct Answer is:
To find the cosine of the angle between the vectors \(\vec{u}\) and \(\vec{v}\), we first need to determine the value of \(\lambda\) given that the volume of the parallelepiped formed by the vectors \(\vec{u}\), \(\vec{v}\), and \(\vec{w}\) is 1 cubic unit. ### Step-by-step Solution: 1. **Write the vectors**: \[ \vec{u} = \hat{i} + \hat{j} + \lambda \hat{k} \] \[ \vec{v} = 2 \hat{i} + \hat{j} + \hat{k} \] \[ \vec{w} = \hat{i} + \hat{j} + 3 \hat{k} \] 2. **Volume of the parallelepiped**: The volume \(V\) is given by the absolute value of the scalar triple product: \[ V = |\vec{u} \cdot (\vec{v} \times \vec{w})| \] We know \(V = 1\). 3. **Calculate \(\vec{v} \times \vec{w}\)**: To find \(\vec{v} \times \vec{w}\), we use the determinant: \[ \vec{v} \times \vec{w} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 1 \\ 1 & 1 & 3 \end{vmatrix} \] Expanding this determinant: \[ = \hat{i} \begin{vmatrix} 1 & 1 \\ 1 & 3 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} \] \[ = \hat{i} (1 \cdot 3 - 1 \cdot 1) - \hat{j} (2 \cdot 3 - 1 \cdot 1) + \hat{k} (2 \cdot 1 - 1 \cdot 1) \] \[ = \hat{i} (3 - 1) - \hat{j} (6 - 1) + \hat{k} (2 - 1) \] \[ = 2\hat{i} - 5\hat{j} + 1\hat{k} \] 4. **Calculate \(\vec{u} \cdot (\vec{v} \times \vec{w})\)**: Now we compute: \[ \vec{u} \cdot (2\hat{i} - 5\hat{j} + \hat{k}) = (1)(2) + (1)(-5) + (\lambda)(1) \] \[ = 2 - 5 + \lambda = \lambda - 3 \] 5. **Set the volume equation**: Since the volume is given as 1, \[ |\lambda - 3| = 1 \] This gives us two equations: \[ \lambda - 3 = 1 \quad \text{or} \quad \lambda - 3 = -1 \] Solving these: \[ \lambda = 4 \quad \text{or} \quad \lambda = 2 \] 6. **Find \(\vec{u}\) for both values of \(\lambda\)**: - If \(\lambda = 4\): \[ \vec{u} = \hat{i} + \hat{j} + 4\hat{k} \] - If \(\lambda = 2\): \[ \vec{u} = \hat{i} + \hat{j} + 2\hat{k} \] 7. **Calculate the cosine of the angle between \(\vec{u}\) and \(\vec{v}\)**: Using the formula: \[ \cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| |\vec{v}|} \] **For \(\lambda = 4\)**: \[ \vec{u} = \hat{i} + \hat{j} + 4\hat{k} \] \[ \vec{v} = 2\hat{i} + \hat{j} + \hat{k} \] \[ \vec{u} \cdot \vec{v} = (1)(2) + (1)(1) + (4)(1) = 2 + 1 + 4 = 7 \] \[ |\vec{u}| = \sqrt{1^2 + 1^2 + 4^2} = \sqrt{1 + 1 + 16} = \sqrt{18} \] \[ |\vec{v}| = \sqrt{2^2 + 1^2 + 1^2} = \sqrt{4 + 1 + 1} = \sqrt{6} \] \[ \cos \theta = \frac{7}{\sqrt{18} \cdot \sqrt{6}} = \frac{7}{\sqrt{108}} = \frac{7}{6\sqrt{3}} \] **For \(\lambda = 2\)**: \[ \vec{u} = \hat{i} + \hat{j} + 2\hat{k} \] \[ \vec{u} \cdot \vec{v} = (1)(2) + (1)(1) + (2)(1) = 2 + 1 + 2 = 5 \] \[ |\vec{u}| = \sqrt{1^2 + 1^2 + 2^2} = \sqrt{1 + 1 + 4} = \sqrt{6} \] \[ \cos \theta = \frac{5}{\sqrt{6} \cdot \sqrt{6}} = \frac{5}{6} \] ### Final Results: - For \(\lambda = 4\), \(\cos \theta = \frac{7}{6\sqrt{3}}\) - For \(\lambda = 2\), \(\cos \theta = \frac{5}{6}\)

To find the cosine of the angle between the vectors \(\vec{u}\) and \(\vec{v}\), we first need to determine the value of \(\lambda\) given that the volume of the parallelepiped formed by the vectors \(\vec{u}\), \(\vec{v}\), and \(\vec{w}\) is 1 cubic unit. ### Step-by-step Solution: 1. **Write the vectors**: \[ \vec{u} = \hat{i} + \hat{j} + \lambda \hat{k} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a= hat i+ hat j+ hat k ,\ vec b= hat i- hat j+ hat k ,\ vec c= hat i+2 hat j- hat k .

If vec(A) = 5 hat(i) - 3 hat(j) + 4 hat(k) and vec(B) = hat(j) - hat(k) , find the sine of the angle between vec(a) and vec(B)

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=2 hat i+3 hat j+4 hat k ,\ vec b= hat i+2 hat j- hat k ,\ vec c=3 hat i- hat j+2 hat k .

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=2 hat i-3 hat j+4 hat k ,\ vec b= hat i+2 hat j- hat k ,\ vec c=3 hat i- hat j-2 hat k .

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=11 hat i ,\ vec b=2 hat j ,\ vec c=13 hat k .

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors: i, vec a=2 hat i+3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j+2 hat k ii, vec a=2 hat i-3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j-2 hat k iii, vec a=11 hat i , vec b=2 hat j , vec c=13 hat k iv, vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j- hat k

If vec a=3 hat i- hat j-4 hat k , vec b=2 hat i+4 hat j-3 hat k and vec c= hat i+2 hat j- hat k , find |3 vec a-2 hat b+4 hat c|dot

Find the volume of the parallelopiped whose edges are represented by vec(a) = 2 hat(i) - 3 hat(j) + 4 hat(k) , vec(b) = hat(i) + 2 hat(j) - hat(k), vec(c) = 3 hat(i) - hat(j) + 2 hat(k)

If vec a= hat i+ hat j+ hat k ,\ vec b=2 hat i- hat j+3 hat k\ a n d\ vec c= hat i-2 hat j+ hat k find a unit vector parallel to 2 vec a- vec b+3 vec c