Home
Class 12
MATHS
Find the sum, sum(k=1) ^(20) (1+2+3+.......

Find the sum, `sum_(k=1) ^(20) (1+2+3+.....+k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum \( S = \sum_{k=1}^{20} (1 + 2 + 3 + \ldots + k) \), we can follow these steps: ### Step 1: Use the formula for the sum of the first \( k \) natural numbers The sum of the first \( k \) natural numbers is given by the formula: \[ \sum_{n=1}^{k} n = \frac{k(k + 1)}{2} \] Thus, we can rewrite our sum \( S \) as: \[ S = \sum_{k=1}^{20} \frac{k(k + 1)}{2} \] ### Step 2: Factor out the constant Since \( \frac{1}{2} \) is a constant, we can factor it out: \[ S = \frac{1}{2} \sum_{k=1}^{20} k(k + 1) \] ### Step 3: Expand the summation Now, we can expand \( k(k + 1) \): \[ k(k + 1) = k^2 + k \] Thus, we can rewrite the sum: \[ S = \frac{1}{2} \left( \sum_{k=1}^{20} k^2 + \sum_{k=1}^{20} k \right) \] ### Step 4: Use the formulas for the sums of squares and natural numbers We will use the following formulas: 1. The sum of the first \( n \) natural numbers: \[ \sum_{k=1}^{n} k = \frac{n(n + 1)}{2} \] 2. The sum of the squares of the first \( n \) natural numbers: \[ \sum_{k=1}^{n} k^2 = \frac{n(n + 1)(2n + 1)}{6} \] For \( n = 20 \): - The sum of the first 20 natural numbers: \[ \sum_{k=1}^{20} k = \frac{20(20 + 1)}{2} = \frac{20 \times 21}{2} = 210 \] - The sum of the squares of the first 20 natural numbers: \[ \sum_{k=1}^{20} k^2 = \frac{20(20 + 1)(2 \times 20 + 1)}{6} = \frac{20 \times 21 \times 41}{6} \] Calculating this: \[ = \frac{20 \times 21 \times 41}{6} = \frac{17220}{6} = 2870 \] ### Step 5: Substitute back into the equation Now substituting back into our equation for \( S \): \[ S = \frac{1}{2} \left( 2870 + 210 \right) = \frac{1}{2} \times 3080 = 1540 \] ### Final Answer Thus, the sum \( S = \sum_{k=1}^{20} (1 + 2 + 3 + \ldots + k) = 1540 \). ---

To find the sum \( S = \sum_{k=1}^{20} (1 + 2 + 3 + \ldots + k) \), we can follow these steps: ### Step 1: Use the formula for the sum of the first \( k \) natural numbers The sum of the first \( k \) natural numbers is given by the formula: \[ \sum_{n=1}^{k} n = \frac{k(k + 1)}{2} \] Thus, we can rewrite our sum \( S \) as: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum sum_(k=0)^(10).^(20)C_k .

Find the sum S = sum _( k =1) ^( 2016) (-1) ^(( (k +1))/(2))k

Find the value off sum_(k=1)^10(2+3^k)

Find the sum of the series sum_(k=1)^(360)(1/(ksqrt(k+1)+(k+1)sqrt(k)))

The sum sum _ ( k = 1 ) ^ ( 20 ) k ( 1 ) / ( 2 ^ k ) is equal to l - (11) /(m ^ ( 19 )) . The value of ( l + m ) is ______ .

sum_(k=0)^(5)(-1)^(k)2k

Evaluate sum_(k=1)^(11)(2+3^k)

Find the sum_(k=1)^(oo) sum_(n=1)^(oo)k/(2^(n+k)) .

The sum sum_(k=1)^oocot^(-1)(2k^2) equals

T_(k) = K ^(3) + 3 ^(k) , then find sum_(k =1) ^( n ) T _(k).