Home
Class 12
MATHS
Let f(x) = (x[x])/(x^2+1) : (1, 3) rarr ...

Let `f(x) = (x[x])/(x^2+1) : (1, 3) rarr R` then range of f(x) is (where [ . ] denotes greatest integer function)

A

`(0,1/2) uu (3/5,7/5]`

B

`(2/5,1/2) uu (3/5,4/5]`

C

`(2/5,1) uu (1,4/5]`

D

`(0,1/3) uu (2/5,4/5]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \frac{x \lfloor x \rfloor}{x^2 + 1} \) defined on the interval \( (1, 3) \), we will analyze the function in two parts based on the greatest integer function \( \lfloor x \rfloor \). ### Step 1: Determine the intervals for \( \lfloor x \rfloor \) 1. For \( x \in (1, 2) \): - \( \lfloor x \rfloor = 1 \) - Thus, \( f(x) = \frac{x \cdot 1}{x^2 + 1} = \frac{x}{x^2 + 1} \) 2. For \( x \in (2, 3) \): - \( \lfloor x \rfloor = 2 \) - Thus, \( f(x) = \frac{x \cdot 2}{x^2 + 1} = \frac{2x}{x^2 + 1} \) ### Step 2: Analyze \( f(x) \) for \( x \in (1, 2) \) For \( x \in (1, 2) \): \[ f(x) = \frac{x}{x^2 + 1} \] To find the maximum and minimum values, we differentiate \( f(x) \): \[ f'(x) = \frac{(x^2 + 1)(1) - x(2x)}{(x^2 + 1)^2} = \frac{1 - x^2}{(x^2 + 1)^2} \] Setting \( f'(x) = 0 \): \[ 1 - x^2 = 0 \implies x = 1 \text{ or } x = -1 \] Since \( x \in (1, 2) \), we only consider \( x = 1 \). - Evaluate \( f(x) \) at the endpoints: - \( f(1) = \frac{1}{1^2 + 1} = \frac{1}{2} \) - \( f(2) = \frac{2}{2^2 + 1} = \frac{2}{5} \) Since \( f'(x) \) changes sign from positive to negative, \( f(x) \) is decreasing in \( (1, 2) \). Thus, the range in this interval is: \[ \left( \frac{2}{5}, \frac{1}{2} \right) \] ### Step 3: Analyze \( f(x) \) for \( x \in (2, 3) \) For \( x \in (2, 3) \): \[ f(x) = \frac{2x}{x^2 + 1} \] Differentiating \( f(x) \): \[ f'(x) = \frac{(x^2 + 1)(2) - 2x(2x)}{(x^2 + 1)^2} = \frac{2 - 2x^2}{(x^2 + 1)^2} \] Setting \( f'(x) = 0 \): \[ 2 - 2x^2 = 0 \implies x^2 = 1 \implies x = 1 \text{ or } x = -1 \] Again, only \( x = 2 \) is relevant in this interval. - Evaluate \( f(x) \) at the endpoints: - \( f(2) = \frac{4}{5} \) - \( f(3) = \frac{6}{10} = \frac{3}{5} \) Since \( f'(x) \) changes sign from positive to negative, \( f(x) \) is decreasing in \( (2, 3) \). Thus, the range in this interval is: \[ \left( \frac{3}{5}, \frac{4}{5} \right) \] ### Step 4: Combine the ranges Combining the ranges from both intervals, we have: \[ \text{Range of } f(x) = \left( \frac{2}{5}, \frac{1}{2} \right) \cup \left( \frac{3}{5}, \frac{4}{5} \right) \] ### Final Answer: The range of \( f(x) \) is: \[ \left( \frac{2}{5}, \frac{1}{2} \right) \cup \left( \frac{3}{5}, \frac{4}{5} \right) \]

To find the range of the function \( f(x) = \frac{x \lfloor x \rfloor}{x^2 + 1} \) defined on the interval \( (1, 3) \), we will analyze the function in two parts based on the greatest integer function \( \lfloor x \rfloor \). ### Step 1: Determine the intervals for \( \lfloor x \rfloor \) 1. For \( x \in (1, 2) \): - \( \lfloor x \rfloor = 1 \) - Thus, \( f(x) = \frac{x \cdot 1}{x^2 + 1} = \frac{x}{x^2 + 1} \) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

The range of the function f(x)=2+x-[x-3] is, (where [.] denotes greatest integer function):

The function, f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

Let f(x)=[9^x-3^x+1] for all x in (-oo, 1), then the range of f(x) is, ([.] denotes the greatest integer function).

Let f(x)=[9^x-3^x+1] for all x in (-oo, 1), then the range of f(x) is, ([.] denotes the greatest integer function).

If f(x) =2 [x]+ cos x , then f: R ->R is: (where [ ] denotes greatest integer function)

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)

The range of f(x)=(2+x-[x])/(1-x+[x]) .where [ ] denotes the greatest integer function is

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

Range of f(x)=sin^(-1)[x-1]+2cos^(-1)[x-2] ([.] denotes greatest integer function)