Home
Class 12
MATHS
Let A=[[2,2],[9,4]] and I=[[1,0],[0,1]] ...

Let `A=[[2,2],[9,4]]` and `I=[[1,0],[0,1]]` then value of `10 A^(-1)` is-

A

`4I-A`

B

`6I-A`

C

`A-4I`

D

`A-6I`

Text Solution

Verified by Experts

The correct Answer is:
D

NA
Promotional Banner

Similar Questions

Explore conceptually related problems

If A A=[[3,-2],[ 4,-2]] and I=[[1, 0],[ 0, 1]] , find k so that A^2=k A-2I .

If A=[(2x,0),(x,x)] and A^(-1)=[(1,0),(-1,2)] , then the value of x is

If (A -2I)(A-3I)=0 , when A=[{:(4,2),(-1,x):}] and I=[{:(1,0),(0,1):}] , find the value of x

If A=[ (3,-2),( 4 ,-2) ] and I=[(1,0),(0,1)] , then prove that A^2-A+2I=O .

If A=[[3,1],[-1,2]], I=[[1,0],[0,1]] and O=[[0,0],[0,0]] , show that A^2-5A+7I=0 . Hence find A^(-1) .

If A=[[1,0,-2],[3,-1,0],[-2,1,1]],B=[[0,5,-4],[-2,1,3],[-1,0,2]] and C=[[1,5,2],[-1,1,0],[0,-1,1]] verify that A(B-C)=(AB-AC)

If A=[[1, 0],[ 0, 1]] , B=[[1,0],[0,-1]] and C=[[0, 1],[ 1, 0]] , then show that A^2=B^2=C^2=I_2 .

If A=[{:(4,1),(3,2):}] and I=[{:(1,0),(0,1):}] then A^(2)-6A is equal to : a) 3I b) -5I c) 5I d) none of these

Let A = [[0, alpha],[0,0]] and(A+I)^(70) - 70 A = [[a-1,b-1],[c-1,d-1]], the value of a + b + c + d is