Home
Class 12
MATHS
Let (sqrt(2)sin alpha)/sqrt(1+cos 2alpha...

Let `(sqrt(2)sin alpha)/sqrt(1+cos 2alpha)=1/7` and `sqrt((1-cos2 beta)/2)=1/sqrt(10)` where `alpha,beta in (0,pi/2)`. Then `tan(alpha+2beta)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( \tan(\alpha + 2\beta) \) given the equations: 1. \( \frac{\sqrt{2} \sin \alpha}{\sqrt{1 + \cos 2\alpha}} = \frac{1}{7} \) 2. \( \sqrt{\frac{1 - \cos 2\beta}{2}} = \frac{1}{\sqrt{10}} \) ### Step 1: Solve for \( \tan \alpha \) From the first equation, we can manipulate it as follows: \[ \frac{\sqrt{2} \sin \alpha}{\sqrt{1 + \cos 2\alpha}} = \frac{1}{7} \] We know that \( \cos 2\alpha = 1 - 2\sin^2 \alpha \), so: \[ 1 + \cos 2\alpha = 1 + (1 - 2\sin^2 \alpha) = 2 - 2\sin^2 \alpha = 2\cos^2 \alpha \] Substituting this into our equation gives: \[ \frac{\sqrt{2} \sin \alpha}{\sqrt{2 \cos^2 \alpha}} = \frac{1}{7} \] This simplifies to: \[ \frac{\sqrt{2} \sin \alpha}{\sqrt{2} \cos \alpha} = \frac{1}{7} \] Thus, we have: \[ \tan \alpha = \frac{1}{7} \] ### Step 2: Solve for \( \tan 2\beta \) From the second equation, we have: \[ \sqrt{\frac{1 - \cos 2\beta}{2}} = \frac{1}{\sqrt{10}} \] Squaring both sides results in: \[ \frac{1 - \cos 2\beta}{2} = \frac{1}{10} \] Multiplying through by 2 gives: \[ 1 - \cos 2\beta = \frac{2}{10} = \frac{1}{5} \] Thus: \[ \cos 2\beta = 1 - \frac{1}{5} = \frac{4}{5} \] Using the identity \( \sin^2 2\beta + \cos^2 2\beta = 1 \): \[ \sin^2 2\beta = 1 - \cos^2 2\beta = 1 - \left(\frac{4}{5}\right)^2 = 1 - \frac{16}{25} = \frac{9}{25} \] Therefore: \[ \sin 2\beta = \frac{3}{5} \] Now we can find \( \tan 2\beta \): \[ \tan 2\beta = \frac{\sin 2\beta}{\cos 2\beta} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4} \] ### Step 3: Calculate \( \tan(\alpha + 2\beta) \) Using the formula for \( \tan(a + b) \): \[ \tan(\alpha + 2\beta) = \frac{\tan \alpha + \tan 2\beta}{1 - \tan \alpha \tan 2\beta} \] Substituting the values we found: \[ \tan(\alpha + 2\beta) = \frac{\frac{1}{7} + \frac{3}{4}}{1 - \left(\frac{1}{7} \cdot \frac{3}{4}\right)} \] Calculating the numerator: \[ \frac{1}{7} + \frac{3}{4} = \frac{4 + 21}{28} = \frac{25}{28} \] Calculating the denominator: \[ 1 - \frac{3}{28} = \frac{28 - 3}{28} = \frac{25}{28} \] Thus: \[ \tan(\alpha + 2\beta) = \frac{\frac{25}{28}}{\frac{25}{28}} = 1 \] ### Final Answer \[ \tan(\alpha + 2\beta) = 1 \]

To solve the problem, we need to find \( \tan(\alpha + 2\beta) \) given the equations: 1. \( \frac{\sqrt{2} \sin \alpha}{\sqrt{1 + \cos 2\alpha}} = \frac{1}{7} \) 2. \( \sqrt{\frac{1 - \cos 2\beta}{2}} = \frac{1}{\sqrt{10}} \) ### Step 1: Solve for \( \tan \alpha \) From the first equation, we can manipulate it as follows: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt2(sin alpha)/(sqrt(1+cos2 alpha))=1/7 and sqrt((1-cos2beta)/2)=1/(sqrt(10)) alpha, beta in (0, pi/2) then tan (alpha + 2 beta) is equal to _________

If (sqrt(2)cos alpha)/sqrt(1-cos2 alpha)=1/7 and sqrt((1+cos 2 beta)/2)=1/sqrt10,alpha,beta in (pi/2,pi) , then tan (2 alpha - beta) is equal to ........

Let cos (alpha+beta) = 4/5 and sin(alpha-beta)=5/13 where 0<= alpha,beta<= pi/4 then find tan (2alpha)

If cos alpha=(2cos beta-1)/(2-cos beta) then tan (alpha/2) is equal to

If alpha = cos^(-1)((3)/(5)), beta = tan ^(-1)((1)/(3)) , where 0 lt alpha, beta lt (pi)/(2) , then alpha - beta is equal to

If alpha=cos^(-1)((3)/(5)),beta=tan^(-1)((1)/(3)) , where 0ltalpha,betalt(pi)/(2) , then alpha-beta is equa to :

If sin(alpha+beta)=1 and sin(alpha-beta)=1/2 , where 0lt=alpha, betalt= pi/2 , then find the values of tan(alpha+2beta) and tan(2alpha+beta) .

If sin^(4)alpha+cos^(4)beta+2=4 sin alpha cos beta, 0 le alpha, (pi)/(2) , then (sin alpha+cos beta) is equal to

If sin alpha+sin beta=a and cos alpha-cos beta=b then tan((alpha-beta)/2) is equal to-

sinalpha=1/(sqrt(10))*sinbeta=1/(sqrt(5)) (where alpha,beta and alpha+beta are positive acute angles). show that alpha+beta = pi/4