Home
Class 12
MATHS
sum(n=1)^7(n(n+1)(2n+1))/4 is equal to...

`sum_(n=1)^7(n(n+1)(2n+1))/4` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the summation \( \sum_{n=1}^{7} \frac{n(n+1)(2n+1)}{4} \), we can follow these steps: ### Step 1: Simplify the Expression First, we can simplify the expression inside the summation: \[ \frac{n(n+1)(2n+1)}{4} \] This can be rewritten as: \[ \frac{1}{4} n(n+1)(2n+1) \] ### Step 2: Distribute and Expand Now, we can expand \( n(n+1)(2n+1) \): \[ n(n+1)(2n+1) = n(n(2n + 1) + 2n + 1) = n(2n^2 + 3n + 1) = 2n^3 + 3n^2 + n \] So, we have: \[ \frac{1}{4} (2n^3 + 3n^2 + n) \] ### Step 3: Separate the Summation Now we can separate the summation: \[ \sum_{n=1}^{7} \frac{1}{4} (2n^3 + 3n^2 + n) = \frac{1}{4} \left( 2 \sum_{n=1}^{7} n^3 + 3 \sum_{n=1}^{7} n^2 + \sum_{n=1}^{7} n \right) \] ### Step 4: Use Summation Formulas We will use the following formulas for the summations: - \( \sum_{k=1}^{n} k = \frac{n(n+1)}{2} \) - \( \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \) - \( \sum_{k=1}^{n} k^3 = \left( \frac{n(n+1)}{2} \right)^2 \) For \( n = 7 \): 1. \( \sum_{n=1}^{7} n = \frac{7 \cdot 8}{2} = 28 \) 2. \( \sum_{n=1}^{7} n^2 = \frac{7 \cdot 8 \cdot 15}{6} = 140 \) 3. \( \sum_{n=1}^{7} n^3 = \left( \frac{7 \cdot 8}{2} \right)^2 = 784 \) ### Step 5: Substitute Back into the Summation Now we substitute these values back into our expression: \[ \frac{1}{4} \left( 2 \cdot 784 + 3 \cdot 140 + 28 \right) \] Calculating each term: - \( 2 \cdot 784 = 1568 \) - \( 3 \cdot 140 = 420 \) - \( 28 = 28 \) Adding these together: \[ 1568 + 420 + 28 = 2016 \] ### Step 6: Final Calculation Now, we divide by 4: \[ \frac{2016}{4} = 504 \] Thus, the final result is: \[ \sum_{n=1}^{7} \frac{n(n+1)(2n+1)}{4} = 504 \]

To evaluate the summation \( \sum_{n=1}^{7} \frac{n(n+1)(2n+1)}{4} \), we can follow these steps: ### Step 1: Simplify the Expression First, we can simplify the expression inside the summation: \[ \frac{n(n+1)(2n+1)}{4} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo) (1)/(2n(2n+1)) is equal to

Let sum_(r=1)^(n) r^(6)=f(n)," then "sum_(n=1)^(n) (2r-1)^(6) is equal to

Let a_(n)=int_(0)^(pi//2)(1-sint )^(n) sin 2t, then lim_(n to oo)sum_(n=1)^(n)(a_(n))/(n) is equal to

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

sum_(i=1)^(n) sum_(i=1)^(n) i is equal to

sum_(n=1)^(oo) ((Inx)^(n))/(n!) is equal to

sum_(r=1)^(n) 1/(log_(2^(r))4) is equal to

The sum sum_(n=1)^(10) ( n(2n-1)(2n+1))/( 5) is equal to _______.

The sum, underset(n-1)overset(10)(Sigma)(n(2n+1)(2n-1))/5 is equal to.........

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to