Home
Class 12
MATHS
If | (z - i)/(z + 2i)| = 1, |z| = 5/2 th...

If `| (z - i)/(z + 2i)| = 1, |z| = 5/2` then the value of `|z + 3i|`

A

`7/2`

B

`sqrt10`

C

`sqrt5`

D

sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( |z + 3i| \) given that \( \left| \frac{z - i}{z + 2i} \right| = 1 \) and \( |z| = \frac{5}{2} \). ### Step-by-Step Solution: 1. **Understanding the Given Condition**: We start with the equation: \[ \left| \frac{z - i}{z + 2i} \right| = 1 \] This implies that: \[ |z - i| = |z + 2i| \] This means the distances from the point \( z \) to the points \( i \) and \( -2i \) are equal. 2. **Setting Up the Equation**: Let \( z = x + iy \), where \( x \) is the real part and \( y \) is the imaginary part. Then we can rewrite the distances: \[ |z - i| = |(x + iy) - i| = |x + i(y - 1)| = \sqrt{x^2 + (y - 1)^2} \] \[ |z + 2i| = |(x + iy) + 2i| = |x + i(y + 2)| = \sqrt{x^2 + (y + 2)^2} \] Setting these equal gives: \[ \sqrt{x^2 + (y - 1)^2} = \sqrt{x^2 + (y + 2)^2} \] 3. **Squaring Both Sides**: Squaring both sides eliminates the square roots: \[ x^2 + (y - 1)^2 = x^2 + (y + 2)^2 \] Simplifying this, we get: \[ (y - 1)^2 = (y + 2)^2 \] 4. **Expanding and Simplifying**: Expanding both sides: \[ y^2 - 2y + 1 = y^2 + 4y + 4 \] Canceling \( y^2 \) from both sides: \[ -2y + 1 = 4y + 4 \] Rearranging gives: \[ 6y = -3 \quad \Rightarrow \quad y = -\frac{1}{2} \] 5. **Using the Modulus Condition**: We know \( |z| = \frac{5}{2} \): \[ |z| = \sqrt{x^2 + y^2} = \frac{5}{2} \] Squaring both sides: \[ x^2 + y^2 = \frac{25}{4} \] Substituting \( y = -\frac{1}{2} \): \[ x^2 + \left(-\frac{1}{2}\right)^2 = \frac{25}{4} \] This simplifies to: \[ x^2 + \frac{1}{4} = \frac{25}{4} \] Thus: \[ x^2 = \frac{25}{4} - \frac{1}{4} = \frac{24}{4} = 6 \] Therefore, \( x = \pm \sqrt{6} \). 6. **Finding \( |z + 3i| \)**: Now we need to calculate \( |z + 3i| \): \[ |z + 3i| = |x + i(y + 3)| = \sqrt{x^2 + (y + 3)^2} \] Substituting \( y = -\frac{1}{2} \): \[ |z + 3i| = \sqrt{x^2 + \left(-\frac{1}{2} + 3\right)^2} = \sqrt{x^2 + \left(\frac{5}{2}\right)^2} \] Thus: \[ |z + 3i| = \sqrt{x^2 + \frac{25}{4}} \] Since \( x^2 = 6 \): \[ |z + 3i| = \sqrt{6 + \frac{25}{4}} = \sqrt{\frac{24}{4} + \frac{25}{4}} = \sqrt{\frac{49}{4}} = \frac{7}{2} \] ### Final Answer: \[ |z + 3i| = \frac{7}{2} \]

To solve the problem, we need to find the value of \( |z + 3i| \) given that \( \left| \frac{z - i}{z + 2i} \right| = 1 \) and \( |z| = \frac{5}{2} \). ### Step-by-Step Solution: 1. **Understanding the Given Condition**: We start with the equation: \[ \left| \frac{z - i}{z + 2i} \right| = 1 ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If |z +1| = z + 2(1 - i) , then the value of z

If z = 3 -2i then the value s of (Rez) (Im z)^(2) is

If z = (-4 +2 sqrt3i)/(5 +sqrt3i) , then the value of arg(z) is

If |z-i| ≤ 2 and z_0 = 5+3i , the maximum value of |i z + z_0| is

If |z _1 |= 2 and (1 - i)z_2 + (1+i)barz_2 = 8sqrt2 , then the minimum value of |z_1 - z_2| is ______.

Least value of |z-2|+|z-4i| is

if |z-2i| le sqrt2 , then the maximum value of |3+i(z-1)| is :

If z satisfies the condition arg (z + i) = (pi)/(4) . Then the minimum value of |z + 1 - i| + |z - 2 + 3 i| is _______.

If z is any complex number satisfying |z - 3 - 2i | less than or equal 2, then the minimum value of |2z - 6 + 5i| is (1) 2 (2) 1 (3) 3 (4) 5

If |z+2-i|=5 and maxium value of |3z +9-7i| is M, then the value of M is ______.