Home
Class 12
MATHS
If vec P = (a+1) hati + a hatj + a hatk ...

If `vec P = (a+1) hati + a hatj + a hatk` ` vec Q = a hati + (a+1) hatj + ahatk` `vec R = a hati + a hatj + (a+1) hatk` ` vec P, vec Q, vec R` are coplanar vectors and `3(vec P . vec Q)^2 - lambda | vec R xx vec Q|^2 = 0` then value of `lambda` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \lambda \) given the vectors \( \vec{P} \), \( \vec{Q} \), and \( \vec{R} \) are coplanar and satisfy the equation: \[ 3(\vec{P} \cdot \vec{Q})^2 - \lambda |\vec{R} \times \vec{Q}|^2 = 0 \] ### Step 1: Define the vectors The vectors are given as: \[ \vec{P} = (a+1) \hat{i} + a \hat{j} + a \hat{k} \] \[ \vec{Q} = a \hat{i} + (a+1) \hat{j} + a \hat{k} \] \[ \vec{R} = a \hat{i} + a \hat{j} + (a+1) \hat{k} \] ### Step 2: Check for coplanarity For the vectors \( \vec{P} \), \( \vec{Q} \), and \( \vec{R} \) to be coplanar, the scalar triple product must be zero: \[ \vec{P} \cdot (\vec{Q} \times \vec{R}) = 0 \] ### Step 3: Calculate \( \vec{Q} \times \vec{R} \) To find \( \vec{Q} \times \vec{R} \), we set up the determinant: \[ \vec{Q} \times \vec{R} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a & a+1 & a \\ a & a & a+1 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \left( (a+1)(a+1) - a^2 \right) - \hat{j} \left( a(a+1) - a^2 \right) + \hat{k} \left( a(a) - a(a+1) \right) \] This simplifies to: \[ = \hat{i} \left( a^2 + 2a + 1 - a^2 \right) - \hat{j} \left( a^2 + a - a^2 \right) + \hat{k} \left( a^2 - a^2 - a \right) \] \[ = (2a + 1) \hat{i} - a \hat{j} - a \hat{k} \] ### Step 4: Calculate \( |\vec{Q} \times \vec{R}|^2 \) The magnitude squared is: \[ |\vec{Q} \times \vec{R}|^2 = (2a + 1)^2 + (-a)^2 + (-a)^2 = (2a + 1)^2 + 2a^2 \] Expanding this: \[ = 4a^2 + 4a + 1 + 2a^2 = 6a^2 + 4a + 1 \] ### Step 5: Calculate \( \vec{P} \cdot \vec{Q} \) Now, we calculate the dot product \( \vec{P} \cdot \vec{Q} \): \[ \vec{P} \cdot \vec{Q} = ((a+1)a) + (a(a+1)) + (a^2) \] This simplifies to: \[ = a^2 + a + a^2 + a + a^2 = 3a^2 + 2a \] ### Step 6: Substitute into the equation Now substituting into the equation: \[ 3(\vec{P} \cdot \vec{Q})^2 - \lambda |\vec{Q} \times \vec{R}|^2 = 0 \] This becomes: \[ 3(3a^2 + 2a)^2 - \lambda (6a^2 + 4a + 1) = 0 \] ### Step 7: Solve for \( \lambda \) Expanding \( (3a^2 + 2a)^2 \): \[ = 9a^4 + 12a^3 + 4a^2 \] Thus: \[ 3(9a^4 + 12a^3 + 4a^2) - \lambda (6a^2 + 4a + 1) = 0 \] This simplifies to: \[ 27a^4 + 36a^3 + 12a^2 - \lambda (6a^2 + 4a + 1) = 0 \] ### Step 8: Find \( \lambda \) For this to hold for all \( a \), we can equate coefficients. The coefficient of \( a^2 \) gives: \[ 12 - 6\lambda = 0 \implies \lambda = 2 \] Thus, the value of \( \lambda \) is: \[ \lambda = 2 \] ### Final Answer: \[ \lambda = 2 \]

To solve the problem, we need to find the value of \( \lambda \) given the vectors \( \vec{P} \), \( \vec{Q} \), and \( \vec{R} \) are coplanar and satisfy the equation: \[ 3(\vec{P} \cdot \vec{Q})^2 - \lambda |\vec{R} \times \vec{Q}|^2 = 0 \] ### Step 1: Define the vectors ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a=hati -2 hatj + 3 hatk, vec b = 3 hati + 3 hatj -hat k and vec c=d hati + hatj + (2d-1) hat k ." If " vec c is parallel to the plane of the vectors veca and vec b, " then " 11 d =

If vec r = 3 hati + 2 hatj - 5 hatk , vec a= 2 hati - hatj + hatk, vec b = hati + 3 hatj - 2hatk and vec c=-2 hati + hatj - 3 hatk " such that " hat r = x vec a +y vec b + z vec c then

Let veca = hati - 2 hatj + 2hatk and vec b = 2 hati - hatj + hatk be two vectors. If vec c is a vector such that vecb xx vec c = vec b xx vec a and vec c vec a = 1 , then vec c vec b is equal to :

Given two vectors veca=-hati + 2hatj + 2hatk and vecb =- 2hati + hatj + 2hatk find |vec a xx vec b|

If vec a = hati + 2 hatj + 2 hat k and vec b = 3 hati + 6 hatj + 2 hat k then the vector in the direction of vec a and having mgnitude as |vec b| is

If vector vec a = hati + hatj + hatk , vecb = 4 hati + 3 hatj + 4 hatk and vec c = hati + alpha hatj + beta hatk are linearly dependent and | vec c | = sqrt3 , then value of | alpha | + | beta | is

If vec a =hati +3hatj , vecb = 2hati -hatj - hatk and vec c =mhati +7 hatj +3hatk are coplanar then find the value of m.

In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 hatj + hatj + 2 hatk, " then " | vec(CA)|=

If vec p=5 hat i+lambda hat j-3 hat k and vec q= hat i+3 hat j-5 hat k , then find the value of lambda , so that vec p+ vec q and vec p- vec q are perpendicular vectors.

Given: vec p = - hati -3 hatj + 2hatk and vec r = hati + 3 hatj + 5hatk . Find vector parallel to electric field at position r. [ Note that vec p . vec r = 0 ]