Home
Class 12
MATHS
If f(x) = { x, 0 lt x lt 1/2, 1/2, x ...

If `f(x) = { x, 0 lt x lt 1/2, 1/2, x = 1/2, 1-x , 1/2 lt x lt 1}` and `g(x) = (x-1/2)^2` then find the area bounded by f(x) and g(x) from `x = 1/2` to `x= sqrt3/2`

A

`sqrt3/4 - 1/3`

B

`sqrt3/4 + 1/3`

C

`2sqrt3`

D

`3sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the area bounded by the functions \( f(x) \) and \( g(x) \) from \( x = \frac{1}{2} \) to \( x = \frac{\sqrt{3}}{2} \), we will follow these steps: ### Step 1: Understand the Functions The piecewise function \( f(x) \) is defined as: - \( f(x) = x \) for \( 0 < x < \frac{1}{2} \) - \( f(x) = \frac{1}{2} \) for \( x = \frac{1}{2} \) - \( f(x) = 1 - x \) for \( \frac{1}{2} < x < 1 \) The function \( g(x) \) is given as: \[ g(x) = (x - \frac{1}{2})^2 \] ### Step 2: Find Intersection Points To find the area between the curves, we need to determine where they intersect between \( x = \frac{1}{2} \) and \( x = \frac{\sqrt{3}}{2} \). Set \( f(x) = g(x) \): 1. For \( \frac{1}{2} < x < 1 \): \[ 1 - x = (x - \frac{1}{2})^2 \] Expanding the right side: \[ 1 - x = x^2 - x + \frac{1}{4} \] Rearranging gives: \[ x^2 - \frac{3}{4} = 0 \] Solving this, we find: \[ x = \frac{\sqrt{3}}{2} \] Thus, the intersection point in the interval is \( \left(\frac{\sqrt{3}}{2}, 1 - \frac{\sqrt{3}}{2}\right) \). ### Step 3: Set Up the Area Integral The area \( A \) between the curves from \( x = \frac{1}{2} \) to \( x = \frac{\sqrt{3}}{2} \) is given by: \[ A = \int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} [f(x) - g(x)] \, dx \] Since \( f(x) = 1 - x \) and \( g(x) = (x - \frac{1}{2})^2 \) in this interval, we have: \[ A = \int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \left[(1 - x) - (x - \frac{1}{2})^2\right] \, dx \] ### Step 4: Simplify the Integrand We simplify the integrand: \[ (1 - x) - (x - \frac{1}{2})^2 = 1 - x - \left(x^2 - x + \frac{1}{4}\right) = 1 - x - x^2 + x - \frac{1}{4} = \frac{3}{4} - x^2 \] ### Step 5: Evaluate the Integral Now we compute the integral: \[ A = \int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \left(\frac{3}{4} - x^2\right) \, dx \] Calculating the integral: \[ = \left[\frac{3}{4}x - \frac{x^3}{3}\right]_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \] Calculating the upper limit: \[ = \frac{3}{4} \cdot \frac{\sqrt{3}}{2} - \frac{(\frac{\sqrt{3}}{2})^3}{3} = \frac{3\sqrt{3}}{8} - \frac{3\sqrt{3}}{24} = \frac{3\sqrt{3}}{8} - \frac{\sqrt{3}}{8} = \frac{2\sqrt{3}}{8} = \frac{\sqrt{3}}{4} \] Calculating the lower limit: \[ = \frac{3}{4} \cdot \frac{1}{2} - \frac{(\frac{1}{2})^3}{3} = \frac{3}{8} - \frac{1}{24} = \frac{9}{24} - \frac{1}{24} = \frac{8}{24} = \frac{1}{3} \] Now, subtract the lower limit from the upper limit: \[ A = \left(\frac{\sqrt{3}}{4} - \frac{1}{3}\right) \] ### Final Step: Combine Results To combine these results, we need a common denominator: \[ = \frac{3\sqrt{3}}{12} - \frac{4}{12} = \frac{3\sqrt{3} - 4}{12} \] Thus, the area bounded by \( f(x) \) and \( g(x) \) from \( x = \frac{1}{2} \) to \( x = \frac{\sqrt{3}}{2} \) is: \[ \boxed{\frac{3\sqrt{3} - 4}{12}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

3x - 2 lt 2x + 1

If 1lt(x-1)/(x+2)lt7 then find the range of (i) x (ii) x^(2) (iii) (1)/(x)

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

If f(x)={(1-|x| ,, |x|lt=1),(0 ,, |x|>1):} and g(x)=f(x-1)+f(x+1), then find the value of int_(-3)^5g(x)dx .

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

If f(x) ={ x^2-1, 0 lt x lt 2 , 2x+3 , 2 le x lt 3 then the quadratic equation whose roots are lim_(x->2^+)f(x) and lim_(x->2^-)f(x) is

If f(x) = {{:(e ^(x),,"," 0 le x lt 1 ,, ""), (2- e^(x - 1),,"," 1 lt x le 2,, and g(x) = int_(0)^(x) f(t ) dt","),( x- e,,"," 2lt x le 3 ,, ""):} x in [ 1, 3 ] , then

f(x) {{:(-2"," if x le -1),(2x"," if -1lt x le 1),(2"," if x gt 1):}

If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

f (x)= {{:(2(x+1),,, x le -1),( sqrt(1- x^(2)),,, -1 lt x lt 1), (|||x|-1|-1|,,, x ge1 ):} , then: