Home
Class 12
MATHS
If f(x) = |[x+a,x+2,x+1],[x+b,x+3,x+2],[...

If `f(x) = |[x+a,x+2,x+1],[x+b,x+3,x+2],[x+c,x+4,x+3]|` and `a - 2b + c = 1` then

A

`f(-50) = 501`

B

`f(-50) = -1`

C

`f(50) = 1`

D

`f(50) = -501`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the determinant of the given matrix and analyze it based on the condition \( a - 2b + c = 1 \). ### Step 1: Write down the determinant The function is defined as: \[ f(x) = \left| \begin{array}{ccc} x + a & x + 2 & x + 1 \\ x + b & x + 3 & x + 2 \\ x + c & x + 4 & x + 3 \end{array} \right| \] ### Step 2: Apply row operations We will simplify the determinant using row operations. We can perform the operation \( R_1 \rightarrow R_1 + R_3 - 2R_2 \): \[ R_1 = (x + a) + (x + c) - 2(x + b) \] This simplifies to: \[ R_1 = (x + a + x + c - 2x - 2b) = a + c - 2b \] Thus, the first row becomes: \[ a + c - 2b, \quad x + 4 - 6, \quad x + 1 - 4 \] This results in: \[ a + c - 2b, \quad 0, \quad -3 \] ### Step 3: Rewrite the determinant Now the determinant can be rewritten as: \[ f(x) = \left| \begin{array}{ccc} a + c - 2b & 0 & -3 \\ x + b & x + 3 & x + 2 \\ x + c & x + 4 & x + 3 \end{array} \right| \] ### Step 4: Calculate the determinant Using the properties of determinants, we can expand this determinant: \[ f(x) = (a + c - 2b) \left| \begin{array}{cc} x + 3 & x + 2 \\ x + 4 & x + 3 \end{array} \right| \] Calculating the 2x2 determinant: \[ = (x + 3)(x + 3) - (x + 2)(x + 4) = (x + 3)^2 - (x^2 + 6x + 8) \] Expanding and simplifying: \[ = x^2 + 6x + 9 - x^2 - 6x - 8 = 1 \] Thus, we have: \[ f(x) = (a + c - 2b) \cdot 1 = a + c - 2b \] ### Step 5: Use the condition Given the condition \( a - 2b + c = 1 \), we can substitute: \[ f(x) = 1 \] ### Conclusion Since \( f(x) = 1 \) for all \( x \), it is a constant function. Therefore, for any value of \( x \), including \( x = 50 \): \[ f(50) = 1 \] ### Final Answer The correct option is: \[ f(50) = 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that |[x+1,x+2,x+a], [x+2,x+3,x+b],[ x+3,x+4,x+c]|=0 where a ,\ b ,\ c are in A.P.

If f(x)=|[(x-a)^4, (x-a)^3, 1] , [(x-b)^4, (x-b)^3,1] , [(x-c)^4, (x-c)^3,1]| then f'(x)=lambda|[(x-a)^4,(x-a)^2,1] , [(x-b)^4, (x-b)^2, 1] , [(x-c)^4, (x-c)^2,1]| . Find the value of lambda

If a ,b ,c are different, then the value of |[0,x^2-a, x^3-b],[ x^2+a,0,x^2+c],[ x^4+b, x-c,0]| is a. c b. a c. b d. 0

If a,b,c are in A.P.and f(x)= |(x+a,x^2+1,1),(x+b, 2x^2-1,1),(x+c,3x^2-2 , 1)| , then f'(x) is :

If f(x) = x^(3) + a x^(2) + b x + c has a maximum at x = -1 and minimum at x = 3. Find a + b.

If a,b,c are in AP show that |[x+1,x+2,x+a],[x+2,x+3,x+b],[x+3,x+4,x+c]|=0

If f(x)=|(x+c_1,x+a,x+a),(x+b,x+c_2,x+a),(x+b,x+b,x+c_3)| then show that f(x) is linear in x. Hence deduce f(0)= (bg(a)-ag(b))/((b-a)) where g(x)=(c_1-x)(c_2-x)(c_3-x)

If f(x)={x ,xlt=1,x^2+b x+c ,x >1' 'find b and c if function is continuous and differentiable at x=1

If f(x)={(x^2+1,x>=1),(3x-1,x 1) f(x) is (a) 2 (b) - 2 (c) 1 (d) - 1

If a, b, c, are in A.P, then the determinant |[x+2,x+3,x+2a], [x+3,x+4,x+2b], [x+4,x+5,x+2c]| is(A) 0 (B) 1 (C) x (D) 2x