Home
Class 12
MATHS
If (dy)/dx = (xy)/(x^2 + y^2), y(1) = 1...

If `(dy)/dx = (xy)/(x^2 + y^2), y(1) = 1` and `y(x) = e` then `x =`

A

`(sqrt3/2)e`

B

`sqrt3e`

C

`sqrt2e`

D

`e/sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \(\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\) with the initial condition \(y(1) = 1\) and to find \(x\) when \(y(x) = e\), we can follow these steps: ### Step 1: Identify the Type of Differential Equation The given differential equation is homogeneous because both the numerator and denominator are of the same degree (degree 2). ### Step 2: Substitute \(y = ax\) We can use the substitution \(y = ax\), where \(a\) is a function of \(x\). Then, we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = a + x\frac{da}{dx} \] ### Step 3: Substitute into the Differential Equation Substituting \(y = ax\) into the differential equation: \[ a + x\frac{da}{dx} = \frac{x(ax)}{x^2 + (ax)^2} \] This simplifies to: \[ a + x\frac{da}{dx} = \frac{ax^2}{x^2(1 + a^2)} = \frac{a}{1 + a^2} \] ### Step 4: Rearranging the Equation Rearranging gives: \[ x\frac{da}{dx} = \frac{a}{1 + a^2} - a \] This can be simplified to: \[ x\frac{da}{dx} = a\left(\frac{1 - a^2}{1 + a^2}\right) \] ### Step 5: Separate Variables Separating the variables: \[ \frac{1 + a^2}{a(1 - a^2)} da = -\frac{1}{x} dx \] ### Step 6: Integrate Both Sides Integrating both sides: \[ \int \left(\frac{1}{a} + \frac{a}{1 - a^2}\right) da = -\int \frac{1}{x} dx \] The left side integrates to: \[ \ln |a| - \frac{1}{2} \ln |1 - a^2| = -\ln |x| + C \] ### Step 7: Simplify the Equation This can be rewritten as: \[ \ln |a| - \frac{1}{2} \ln |1 - a^2| + \ln |x| = C \] ### Step 8: Substitute Back \(a = \frac{y}{x}\) Substituting back \(a = \frac{y}{x}\): \[ \ln \left|\frac{y}{x}\right| - \frac{1}{2} \ln |1 - \left(\frac{y}{x}\right)^2| + \ln |x| = C \] This simplifies to: \[ \ln |y| = C + \frac{1}{2} \ln |1 - \frac{y^2}{x^2}| \] ### Step 9: Use Initial Condition to Find \(C\) Using the initial condition \(y(1) = 1\): \[ \ln |1| = C + \frac{1}{2} \ln |1 - 1| \Rightarrow C = 0 \] ### Step 10: Substitute \(C\) Back The equation becomes: \[ \ln |y| = \frac{1}{2} \ln |1 - \frac{y^2}{x^2}| \] ### Step 11: Solve for \(y = e\) Now we need to find \(x\) when \(y = e\): \[ \ln |e| = \frac{1}{2} \ln |1 - \frac{e^2}{x^2}| \] This simplifies to: \[ 1 = \frac{1}{2} \ln |1 - \frac{e^2}{x^2}| \] Multiplying both sides by 2: \[ 2 = \ln |1 - \frac{e^2}{x^2}| \] Exponentiating gives: \[ e^2 = 1 - \frac{e^2}{x^2} \] Rearranging leads to: \[ \frac{e^2}{x^2} = 1 - e^2 \] Thus: \[ x^2 = \frac{e^2}{1 - e^2} \] ### Step 12: Final Result Taking the square root: \[ x = \pm \frac{e}{\sqrt{1 - e^2}} \] Since we only consider positive \(x\): \[ x = \frac{e}{\sqrt{1 - e^2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(dy)/(dx) = (2xy)/(x^(2)-1-2y)

(dy)/(dx)=(x+y+1)/(2x+2y+3)

dy/dx=(x-y+1)/(2x-2y+3)

If (x^2+y^2)dy=xydx and y(1)=1 and y(x_o)=e , then x_o=

If K is constant such that xy + k = e ^(((x-1)^2)/(2)) satisfies the differential equation x . ( dy )/( dx) = (( x^2 - x-1) y+ (x-1) and y (1) =0 then find the value of K .

(dy)/(dx) + (xy)/(1-x^(2))=xsqrt(y)

If y(x) is a solution of (dy)/(dx)-(xy)/(1+x)=(1)/(1+x) and y(0)=-1 , then the value of y(2) is

If x(dy)/(dx)=x^(2)+y-2, y(1)=1 , then y(2) equals ………………..

xy-dy/dx=y^3e^(-x^2)

Solve dy/dx = xy + x + y + 1