Home
Class 12
MATHS
If f(x) = [x] – [x/4] , x ∈ R, where ...

If f(x) = [x] – [x/4] , x ∈ R, where [x] denotes the greatest integer function, then :
(1) lim f(x) (x→4-)exists but lim f(x) (x→4+) does not exist.
(2) Both lim f(x) (x→4-) and lim f(x) (x→4+) exist but are not equal.
(3) lim f(x) (x→4+) exists but lim f(x) (x→4-) does not exist.
(4) f is continuous at x = 4.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = [x] - \left[\frac{x}{4}\right] \) as \( x \) approaches 4 from both the left and the right. ### Step 1: Calculate \( \lim_{x \to 4^-} f(x) \) When \( x \) approaches 4 from the left (i.e., \( x \to 4^- \)), we can consider values like \( 3.9, 3.99, \) etc. 1. **Evaluate \( [x] \)**: - For \( x < 4 \), \( [x] = 3 \). 2. **Evaluate \( \left[\frac{x}{4}\right] \)**: - For \( x < 4 \), \( \frac{x}{4} < 1 \), hence \( \left[\frac{x}{4}\right] = 0 \). Now substituting these values into the function: \[ f(x) = [x] - \left[\frac{x}{4}\right] = 3 - 0 = 3. \] Thus, \[ \lim_{x \to 4^-} f(x) = 3. \] ### Step 2: Calculate \( \lim_{x \to 4^+} f(x) \) When \( x \) approaches 4 from the right (i.e., \( x \to 4^+ \)), we can consider values like \( 4.1, 4.01, \) etc. 1. **Evaluate \( [x] \)**: - For \( x \geq 4 \), \( [x] = 4 \). 2. **Evaluate \( \left[\frac{x}{4}\right] \)**: - For \( x \geq 4 \), \( \frac{x}{4} \geq 1 \), hence \( \left[\frac{x}{4}\right] = 1 \). Now substituting these values into the function: \[ f(x) = [x] - \left[\frac{x}{4}\right] = 4 - 1 = 3. \] Thus, \[ \lim_{x \to 4^+} f(x) = 3. \] ### Step 3: Evaluate \( f(4) \) Now we need to find the value of the function at \( x = 4 \): \[ f(4) = [4] - \left[\frac{4}{4}\right] = 4 - 1 = 3. \] ### Conclusion We have: \[ \lim_{x \to 4^-} f(x) = 3, \quad \lim_{x \to 4^+} f(x) = 3, \quad \text{and } f(4) = 3. \] Since both one-sided limits exist and are equal to the value of the function at that point, we conclude that \( f \) is continuous at \( x = 4 \). ### Final Answer The correct option is: (4) \( f \) is continuous at \( x = 4 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

If f(x)=(|x|)/(x) , then show that lim_(xrarr0) f(x) does not exist.

Show that, lim_(xto4) (|x-4|)/(x-4) , does not exist

Let f(x)={(cos[x],xge0),(|x|+a,xlt0):} (where [.] denotes greatest integer function) If lim_(xto0)f(x) exists then a is:

Let f(3)=4 and f'(3)=5 . Then lim_(xrarr3) [f(x)] (where [.] denotes the greatest integer function) is

If f(x)=sgn(x)" and "g(x)=x^(3) ,then prove that lim_(xto0) f(x).g(x) exists though lim_(xto0) f(x) does not exist.

If f(x)=(|x-a|)/(x-a) , then show that lim_(xrarra) f(x) does not exist.

If f(x)={x+1/2, x<0 2x+3/4,x >=0 , then [(lim)_(x->0)f(x)]= (where [.] denotes the greatest integer function)

Let f(x)=\ {x+5,\ if\ x >0 and x-4,\ if\ x 0)\ f(x) does not exist.

If f is an even function, then prove that lim_(x->0^-) f(x) = lim_(x->0^+) f(x)