Home
Class 12
MATHS
Let x = 2sintheta - sin2theta and y = 2...

Let `x = 2sintheta - sin2theta` and `y = 2costheta - cos2theta` find `(d^2 y)/(dx^2)` at `theta= pi`

A

(a)`3/8`

B

(b)`3/2`

C

(c)`5/8`

D

(d)`7/8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the second derivative \(\frac{d^2y}{dx^2}\) at \(\theta = \pi\) given the equations: \[ x = 2\sin\theta - \sin 2\theta \] \[ y = 2\cos\theta - \cos 2\theta \] ### Step 1: Differentiate \(x\) and \(y\) with respect to \(\theta\) First, we differentiate \(x\) with respect to \(\theta\): \[ \frac{dx}{d\theta} = 2\cos\theta - 2\cos 2\theta \] Next, we differentiate \(y\) with respect to \(\theta\): \[ \frac{dy}{d\theta} = -2\sin\theta + 2\sin 2\theta \] ### Step 2: Find \(\frac{dy}{dx}\) Now, we can find \(\frac{dy}{dx}\) using the chain rule: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{-2\sin\theta + 2\sin 2\theta}{2\cos\theta - 2\cos 2\theta} \] We can simplify this expression: \[ \frac{dy}{dx} = \frac{-\sin\theta + \sin 2\theta}{\cos\theta - \cos 2\theta} \] ### Step 3: Apply the sine and cosine difference formulas Using the sine and cosine difference formulas, we can rewrite the numerator and denominator: \[ \sin 2\theta - \sin\theta = 2\cos\left(\frac{3\theta}{2}\right)\sin\left(\frac{\theta}{2}\right) \] \[ \cos\theta - \cos 2\theta = -2\sin\left(\frac{3\theta}{2}\right)\sin\left(\frac{\theta}{2}\right) \] Thus, we have: \[ \frac{dy}{dx} = \frac{2\cos\left(\frac{3\theta}{2}\right)\sin\left(\frac{\theta}{2}\right)}{-2\sin\left(\frac{3\theta}{2}\right)\sin\left(\frac{\theta}{2}\right)} = -\frac{\cos\left(\frac{3\theta}{2}\right)}{\sin\left(\frac{3\theta}{2}\right)} = -\cot\left(\frac{3\theta}{2}\right) \] ### Step 4: Differentiate \(\frac{dy}{dx}\) to find \(\frac{d^2y}{dx^2}\) Now we differentiate \(\frac{dy}{dx}\) with respect to \(\theta\): \[ \frac{d^2y}{dx^2} = \frac{d}{d\theta}\left(-\cot\left(\frac{3\theta}{2}\right)\right) \cdot \frac{d\theta}{dx} \] The derivative of \(-\cot\left(\frac{3\theta}{2}\right)\) is: \[ \frac{3}{2}\csc^2\left(\frac{3\theta}{2}\right) \] Thus, \[ \frac{d^2y}{dx^2} = \frac{3}{2}\csc^2\left(\frac{3\theta}{2}\right) \cdot \frac{d\theta}{dx} \] ### Step 5: Calculate \(\frac{dx}{d\theta}\) at \(\theta = \pi\) Now we need to evaluate \(\frac{dx}{d\theta}\) at \(\theta = \pi\): \[ \frac{dx}{d\theta} = 2\cos(\pi) - 2\cos(2\pi) = 2(-1) - 2(1) = -2 - 2 = -4 \] Thus, \[ \frac{d\theta}{dx} = -\frac{1}{4} \] ### Step 6: Evaluate \(\frac{d^2y}{dx^2}\) at \(\theta = \pi\) Now we substitute \(\theta = \pi\) into \(\frac{d^2y}{dx^2}\): \[ \frac{d^2y}{dx^2} = \frac{3}{2}\csc^2\left(\frac{3\pi}{2}\right) \cdot \left(-\frac{1}{4}\right) \] Since \(\csc\left(\frac{3\pi}{2}\right) = -1\), we have: \[ \csc^2\left(\frac{3\pi}{2}\right) = 1 \] Thus, \[ \frac{d^2y}{dx^2} = \frac{3}{2} \cdot 1 \cdot \left(-\frac{1}{4}\right) = -\frac{3}{8} \] ### Final Answer Since we need the absolute value, the final answer is: \[ \frac{d^2y}{dx^2} = \frac{3}{8} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x =2 cos theta - cos 2 theta y = 2 sin theta - sin 2 theta Find (d^(2)y)/(dx^(2)) at theta = pi/2

If x=2(theta-sintheta) and y=2(1+costheta), " find "(d^(2)y)/(dx^(2))" at "theta=pi/3 .

If x= a sin 2theta (1+ cos 2theta) , y= b cos 2theta(1- cos 2theta) , then (dy)/(dx) =

If x=asec^3theta,y=atan^3theta, find (d^2y)/(dx^2) at theta=pi/4

If x = 2(theta + sin theta) and y = 2(1 - cos theta) , then value of (dy)/(dx) is

If x=a(cos 2 theta+2 theta sin 2 theta) " and" y=a(sin 2 theta - 2 theta cos 2 theta) , find (d^(2)y)/(dx^(2)) " at" theta =(pi)/(8) .

If x=a(2theta-sin2theta) and y=a(1-cos2theta) find (dy)/(dx) when theta = pi/3

If x=a(theta-sintheta) , y=a(1+costheta) find (d^2y)/(dx^2)

If x=a\ (theta-sintheta),\ y=a\ (1+costheta),\ \ \ find (d^2\ y)/(dx^2)

If x=acos^3theta and y=asin^3theta, then find the value of (d^2y)/(dx^2) at theta=pi/6dot