Home
Class 12
MATHS
Let A = {x : |x| lt 2} and B = {x : |x -...

Let `A = {x : |x| lt 2}` and `B = {x : |x - 2| ge 3}` then

A

(1)`A ∩ B = (-2, -1]`

B

(2)`A ∪ B = R - (2, 5)`

C

(3)`A - B = [-1, 2) `

D

(4)`B - A = R - (-2, 5) `

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If A={x in R:|x|lt2} and B={x in R:|x-2|ge3} , then

Let A={x : x in R,-1 lt x lt 1} , B={x : x in R, x le0 or x ge 2} and AuuB=R-D , then find set D

Let A={x:x is a prime number less than 10} and B= {x:x in N and 0 lt x -2 le 4} then A-B is

If 0 lt x lt pi/2 and sin^(n) x + cos^(n) x ge 1 , then

If D={x:x is divisible by 2 and 3 and 0 lt x lt 20} and B={x:x is a multiple of 6 and 0 lt x lt 25} then D-B is

Solve : 5 - 2x lt 11 and 4x - 3 ge 9

x + y ge 4, 2x - y lt 0

Let f(x) ={{:( x+2, 0 le x lt 2),( 6-x, x ge 2):}, g(x) ={{:( 1+ tan x, 0le x lt (pi) /(4)),( 3-cotx,(pi)/(4) le x lt pi ):} f(g(x)) is

Let f(x)= {:{ (x + a , x ge 1 ) , ( ax^(2) + 1, x lt 1) :} then f(x) is derivable at x =1 , if

Let f(x)={((x^3+2x^2-x-2)/(x^3-2x^2-x+2), for |x| lt 1),(x^2+ax+b, for |x| ge 1):} be continuous for all x . Now answer the question:The values of a and b are given by (A) a=-8/3,b=-4/3 (B) a=4/3,b=-8/3 (C) a=-4/3,b=-8/3 (D) a=-4/3,b=8/3