Home
Class 12
MATHS
Let x= sum(n=0)^oo (-1)^n (tantheta)^(2n...

Let `x= sum_(n=0)^oo (-1)^n (tantheta)^(2n)` and ` y = sum_(n=0)^oo (costheta)^(2n)` qhere `theta in (0,pi/4)`, then

A

(1)x(y+1)=1

B

(2)y(1-x) = 1

C

(3)y(x-1)=1

D

(4)y(1+x) = 1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the sums \( x \) and \( y \) and then find a relationship between them. Let's go through the steps systematically. ### Step 1: Evaluate \( x \) The expression for \( x \) is given by: \[ x = \sum_{n=0}^{\infty} (-1)^n (\tan \theta)^{2n} \] This is a geometric series with the first term \( a = 1 \) and the common ratio \( r = -\tan^2 \theta \). The series converges when \( |r| < 1 \), which is true since \( \theta \in (0, \frac{\pi}{4}) \) implies \( \tan \theta < 1 \). The sum of an infinite geometric series is given by: \[ S = \frac{a}{1 - r} \] Substituting our values: \[ x = \frac{1}{1 - (-\tan^2 \theta)} = \frac{1}{1 + \tan^2 \theta} \] Using the identity \( 1 + \tan^2 \theta = \sec^2 \theta \), we can simplify \( x \): \[ x = \frac{1}{\sec^2 \theta} = \cos^2 \theta \] ### Step 2: Evaluate \( y \) The expression for \( y \) is given by: \[ y = \sum_{n=0}^{\infty} (\cos \theta)^{2n} \] This is also a geometric series with the first term \( a = 1 \) and the common ratio \( r = \cos^2 \theta \). The series converges since \( \cos \theta < 1 \) for \( \theta \in (0, \frac{\pi}{4}) \). Using the formula for the sum of a geometric series: \[ y = \frac{1}{1 - \cos^2 \theta} \] Using the identity \( 1 - \cos^2 \theta = \sin^2 \theta \), we can simplify \( y \): \[ y = \frac{1}{\sin^2 \theta} \] ### Step 3: Relate \( x \) and \( y \) Now we have: \[ x = \cos^2 \theta \quad \text{and} \quad y = \frac{1}{\sin^2 \theta} \] Next, we will find a relationship between \( x \) and \( y \). We know: \[ \sin^2 \theta + \cos^2 \theta = 1 \] From the expressions for \( x \) and \( y \), we can write: \[ 1 = \sin^2 \theta + \cos^2 \theta \] Substituting \( \sin^2 \theta = \frac{1}{y} \) and \( \cos^2 \theta = x \): \[ 1 = \frac{1}{y} + x \] Rearranging gives us: \[ x + \frac{1}{y} = 1 \] Multiplying through by \( y \): \[ xy + 1 = y \] Rearranging gives us: \[ y(1 - x) = 1 \] ### Final Result Thus, the final relationship we derived is: \[ y(1 - x) = 1 \] ### Conclusion The correct option from the given choices is: **Option 2: \( y(1 - x) = 1 \)**
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(n=0)^(oo) ((log_ex)^n)/(n!)

sum_(n=1)^(oo) (2n)/(n!)=

If 0 lt theta lt pi/2, x= sum_(n=0)^(oo) cos^(2n) theta, y= sum_(n=0)^(oo) sin^(2n) theta and z=sum_(n=0)^(oo) cos^(2n) theta* Sin^(2n) theta , then show xyz=xy+z .

"For "0ltthetalt(pi)/(2) , if x=sum_(n=0)^(oo)cos^(2n)theta,y=sum_(n=0)^(oo)sin^(2n)phi,z=sum_(n=0)^(oo)cos^(2n)thetasin^(2n)phi , then

sum_(n=1) ^(oo) (1)/((2n-1)!)=

If x=sum_(n=0)^(oo) a^(n),y=sum_(n=0)^(oo)b^(n),z=sum_(n=0)^(oo)(ab)^(n) , where a,blt1 , then

sum_(n=1)^(oo)(1)/(2n-1)*x^(2n)=

sum_(n=1)^(oo) (1)/(2n(2n+1)) is equal to

If x=sum_(n=0)^oocos^(2n)theta,y=sum_(n=0)^oosin^(2n)varphi,z=sum_(n=0)^oocos^(2n)thetasin^(2n)varphi , where 0lttheta,varphi ltpi//2 prove that x z+y z-z=x ydot

If x=sum_(n=0)^oocos^(2n)theta,y=sum_(n=0)^oosin^(2n)varphi,z=sum_(n=0)^oocos^(2n)thetasin^(2n)varphi,w h e r e0 < theta,varphi < pi//2 prove that x z+y z-z=x ydot