Home
Class 12
MATHS
If .^25 C0 + 5 .^25 C1 + 9 .^25 C2 .... ...

If `.^25 C_0 + 5 .^25 C_1 + 9 .^25 C_2 .... 101 .^25 C_25 = 2^(25) k` find k = ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ S = \sum_{r=0}^{25} (4r + 1) \cdot \binom{25}{r} \] This can be split into two separate sums: \[ S = \sum_{r=0}^{25} 4r \cdot \binom{25}{r} + \sum_{r=0}^{25} \binom{25}{r} \] ### Step 1: Evaluate the first sum \(\sum_{r=0}^{25} 4r \cdot \binom{25}{r}\) Using the identity for the sum of \(r \cdot \binom{n}{r}\): \[ \sum_{r=0}^{n} r \cdot \binom{n}{r} = n \cdot 2^{n-1} \] For \(n = 25\): \[ \sum_{r=0}^{25} r \cdot \binom{25}{r} = 25 \cdot 2^{24} \] Thus, \[ \sum_{r=0}^{25} 4r \cdot \binom{25}{r} = 4 \cdot 25 \cdot 2^{24} = 100 \cdot 2^{24} \] ### Step 2: Evaluate the second sum \(\sum_{r=0}^{25} \binom{25}{r}\) Using the binomial theorem: \[ \sum_{r=0}^{n} \binom{n}{r} = 2^n \] For \(n = 25\): \[ \sum_{r=0}^{25} \binom{25}{r} = 2^{25} \] ### Step 3: Combine the results Now we can combine the two sums: \[ S = 100 \cdot 2^{24} + 2^{25} \] Factoring out \(2^{24}\): \[ S = 2^{24} (100 + 2) = 2^{24} \cdot 102 \] ### Step 4: Express \(S\) in the required form We need to express \(S\) in the form \(2^{25} k\): \[ S = 2^{24} \cdot 102 = 2^{25} \cdot \frac{102}{2} = 2^{25} \cdot 51 \] ### Conclusion Thus, we find that: \[ k = 51 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 25C_0 25C_2 +2. 25C_1 25C_3 +3. 25C_2 .25C_4+....+ 24. 25C_23.25C_25=k. 49C_lambda+50C_mu , then the value of 2k-lambda-mu is greater than (where mu,lambda lt 25 )

C_0^2 + C_1^2 + C_2^2 + ………+C_25^2 =

9/25 - 12/25 + 7/25

If a : b = 5 : 6 and b : c = 12 : 25 , find a : c

(1+x)^25 = sum_(r = 0)^(25) C_r x^r then C_1 - C_3 + C_5 - C_7 + ……-C_25 =

Evaluate the following : (i) 1+.^(20)C_(1)+^(20)C_(2)+^(20)C_(3)+....+^(20)C_(19)+^(20)C_(20) (ii) ^(10)C_(1)+^(10)C_(2)+^(10)C_(3)+.....+^(10)C_(9) (iii)^(25)C_(1)+^(25)C_(3)+^(25)C_(5)+.....+^(25)C_(25) (iv) ^(18)C_(2)+^(18)C_(4)+^(18)C_(4)+^(18)C_(6)+....+^(18)C_(18)

Evaluate : ^25C_22-^24C_21

A mixture contains 1 mole of helium (C_p = 2.5 R, C_v= 1.5 R. ) and 1 mole of hydrogen (C_p = 3.5 R, C_v = 2.5 R, ) . Calculate the values of C_p , C_v and gamma for the mixture.

A mixture contains 1 mole of helium (c_p = 2.5 R, C_v 1.5 R. ) and 1mole of hydrogen (C_p = 3.5 R, C_v = 2.5 R, ) . Calculate the values of C_p , C_v and gamma for the mixture.

if sum_(r=0)^(25).^(50)C_(r)(.^(50-r)C_(25-r))=k(.^(50)C_25) , then k equals: (a) 2^(25) (b) 2^(25)-1 (c) 2^(24) (d) 25^(2)