Home
Class 12
MATHS
Let |veca| = 3, |vecb| = 5, vecb.vecc= 1...

Let `|veca| = 3, |vecb| = 5, vecb.vecc= 10`, angle between `vecb` and `vecc` equal to `pi/3`. If `veca` is perpendicular `vecb xx vecc` then find the value of `|veca xx (vecb xx vecc)| `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, let's break it down: ### Given: - \(|\vec{a}| = 3\) - \(|\vec{b}| = 5\) - \(\vec{b} \cdot \vec{c} = 10\) - Angle between \(\vec{b}\) and \(\vec{c} = \frac{\pi}{3}\) - \(\vec{a}\) is perpendicular to \(\vec{b} \times \vec{c}\) ### To Find: - \(|\vec{a} \times (\vec{b} \times \vec{c})|\) ### Step 1: Calculate \(|\vec{c}|\) Using the dot product formula: \[ \vec{b} \cdot \vec{c} = |\vec{b}| |\vec{c}| \cos(\theta) \] where \(\theta\) is the angle between \(\vec{b}\) and \(\vec{c}\). Substituting the known values: \[ 10 = 5 |\vec{c}| \cos\left(\frac{\pi}{3}\right) \] Since \(\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}\), we have: \[ 10 = 5 |\vec{c}| \cdot \frac{1}{2} \] \[ 10 = \frac{5}{2} |\vec{c}| \] Multiplying both sides by 2: \[ 20 = 5 |\vec{c}| \] Dividing by 5: \[ |\vec{c}| = 4 \] ### Step 2: Calculate \(|\vec{b} \times \vec{c}|\) The magnitude of the cross product \(|\vec{b} \times \vec{c}|\) can be calculated using: \[ |\vec{b} \times \vec{c}| = |\vec{b}| |\vec{c}| \sin(\theta) \] where \(\theta\) is the angle between \(\vec{b}\) and \(\vec{c}\). Substituting the known values: \[ |\vec{b} \times \vec{c}| = 5 \cdot 4 \cdot \sin\left(\frac{\pi}{3}\right) \] Since \(\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}\): \[ |\vec{b} \times \vec{c}| = 5 \cdot 4 \cdot \frac{\sqrt{3}}{2} \] \[ |\vec{b} \times \vec{c}| = 10\sqrt{3} \] ### Step 3: Calculate \(|\vec{a} \times (\vec{b} \times \vec{c})|\) Using the vector triple product identity: \[ |\vec{a} \times (\vec{b} \times \vec{c})| = |\vec{a}| |\vec{b} \times \vec{c}| \sin(\phi) \] where \(\phi\) is the angle between \(\vec{a}\) and \(\vec{b} \times \vec{c}\). Since \(\vec{a}\) is perpendicular to \(\vec{b} \times \vec{c}\), \(\phi = \frac{\pi}{2}\) and \(\sin\left(\frac{\pi}{2}\right) = 1\). Substituting the known values: \[ |\vec{a} \times (\vec{b} \times \vec{c})| = |\vec{a}| |\vec{b} \times \vec{c}| \] \[ |\vec{a} \times (\vec{b} \times \vec{c})| = 3 \cdot 10\sqrt{3} \] \[ |\vec{a} \times (\vec{b} \times \vec{c})| = 30\sqrt{3} \] ### Final Answer: \[ |\vec{a} \times (\vec{b} \times \vec{c})| = 30\sqrt{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

veca+vecb+vecc=vec0, |veca|=3, |vecb|=5,|vecc|=9 ,find the angle between veca and vecc .

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to

If veca+vecb+vecc=0,|veca|=3,|vecb|=5,|vecc|=7 find the angle between veca and vecb

Given that veca * vecb = 0 and veca xx vecc = 0 Then the angle between vecb and vecc is

Let veca, vecb, vecc be three unit vectors and veca.vecb=veca.vecc=0 . If the angle between vecb and vecc is pi/3 then find the value of |[veca vecb vecc]|

If veca, vecb, vecc are unit vectors such that veca. vecb =0 = veca.vecc and the angle between vecb and vecc is pi/3 , then find the value of |veca xx vecb -veca xx vecc|

If veca, vecb and vecc are three vectors, such that |veca|=2, |vecb|=3, |vecc|=4, veca. vecc=0, veca. vecb=0 and the angle between vecb and vecc is (pi)/(3) , then the value of |veca xx (2vecb - 3 vecc)| is equal to

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between veca and vecb .

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between veca and vecb .

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between veca and vecb .