Home
Class 12
MATHS
If minimum value of term free from x for...

If minimum value of term free from `x` for `(x/(sintheta) + 1/(xcostheta))^(16)` is `L_1` in `[pi/8,pi/4]` and `L_2` in `[pi/16,pi/8]`, then `L_2/L_1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio \( \frac{L_2}{L_1} \) where \( L_1 \) and \( L_2 \) are the minimum values of the term free from \( x \) in the expression \( \left( \frac{x}{\sin \theta} + \frac{1}{x \cos \theta} \right)^{16} \) evaluated over specified intervals. ### Step-by-Step Solution 1. **Identify the General Term**: The general term in the binomial expansion of \( \left( \frac{x}{\sin \theta} + \frac{1}{x \cos \theta} \right)^{16} \) is given by: \[ T_r = \binom{16}{r} \left( \frac{x}{\sin \theta} \right)^{16-r} \left( \frac{1}{x \cos \theta} \right)^r \] Simplifying this, we have: \[ T_r = \binom{16}{r} \frac{x^{16-r}}{\sin^{16-r} \theta} \cdot \frac{1}{x^r \cos^r \theta} = \binom{16}{r} \frac{x^{16-2r}}{\sin^{16-r} \theta \cos^r \theta} \] 2. **Finding the Term Free from \( x \)**: For the term to be free from \( x \), the exponent of \( x \) must be zero: \[ 16 - 2r = 0 \implies r = 8 \] Thus, the term free from \( x \) is: \[ T_8 = \binom{16}{8} \frac{1}{\sin^8 \theta \cos^8 \theta} \] 3. **Simplifying the Expression**: We can rewrite \( T_8 \) as: \[ T_8 = \binom{16}{8} \frac{1}{(\sin \theta \cos \theta)^8} = \binom{16}{8} \frac{2^8}{\sin(2\theta)^8} \] This is because \( \sin(2\theta) = 2 \sin \theta \cos \theta \). 4. **Calculating \( L_1 \)**: We need to evaluate \( L_1 \) in the interval \( \left[\frac{\pi}{8}, \frac{\pi}{4}\right] \). Since \( \sin(2\theta) \) is increasing in this interval, we take the upper limit \( \theta = \frac{\pi}{4} \): \[ L_1 = \binom{16}{8} \frac{2^8}{\sin(2 \cdot \frac{\pi}{4})^8} = \binom{16}{8} \frac{2^8}{1^8} = \binom{16}{8} \cdot 2^8 \] 5. **Calculating \( L_2 \)**: Now, we evaluate \( L_2 \) in the interval \( \left[\frac{\pi}{16}, \frac{\pi}{8}\right] \). Again, since \( \sin(2\theta) \) is increasing, we take the upper limit \( \theta = \frac{\pi}{8} \): \[ L_2 = \binom{16}{8} \frac{2^8}{\sin(2 \cdot \frac{\pi}{8})^8} = \binom{16}{8} \frac{2^8}{\left(\frac{1}{\sqrt{2}}\right)^8} = \binom{16}{8} \cdot 2^8 \cdot 2^4 = \binom{16}{8} \cdot 2^{12} \] 6. **Finding the Ratio \( \frac{L_2}{L_1} \)**: Now we can find the ratio: \[ \frac{L_2}{L_1} = \frac{\binom{16}{8} \cdot 2^{12}}{\binom{16}{8} \cdot 2^8} = \frac{2^{12}}{2^8} = 2^{4} = 16 \] ### Final Answer Thus, the value of \( \frac{L_2}{L_1} \) is \( 16 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the minimum value of the function f(x)=(pi^2)/(16cot^(-1)(-x))-cot^(-1)x

Find the minimum value of the function f(x) = (pi^(2))/(16 cot^(-1) (-x)) - cot^(-1) x

Find the minimum value of f(x)= pi^2/(16 cot^-1 (-x)) - cot^-1 x

The value of the expression 1+"cosec"(pi)/(4)+"cosec"(pi)/(8)+"cosec"(pi)/(16) is equal to

The minimum value of the function f(x)=x^(10)+x^2+1/(x^(12))+1/((1+sec^(-1)x) is (1) (pi+4)/(pi+1) (2) (3pi+4)/(pi+1) (3) (pi+4)/(3pi+1) (4) 3

The possible values of theta in (0,pi) such that sin (theta) + sin (4theta) + sin(7theta) = 0 are (1) (2pi)/9 , i/4 , (4pi)/9, pi/2, (3pi)/4 , (8pi)/9 (2) pi/4, (5pi)/12, pi/2 , (2pi)/3, (3pi)/4, (8pi)/9 (3) (2pi)/9, pi/4 , pi/2 , (2pi)/3 , (3pi)/4 , (35pi)/36 (4) (2pi)/9, pi/4, pi/2 , (2pi)/3 , (3pi)/4 , (8pi)/9

The possible values of theta in (0,pi) such that sin (theta) + sin (4theta) + sin(7theta) = 0 are (1) (2pi)/9 , i/4 , (4pi)/9, pi/2, (3pi)/4 , (8pi)/9 (2) pi/4, (5pi)/12, pi/2 , (2pi)/3, (3pi)/4, (8pi)/9 (3) (2pi)/9, pi/4 , pi/2 , (2pi)/3 , (3pi)/4 , (35pi)/36 (4) (2pi)/9, pi/4, pi/2 , (2pi)/3 , (3pi)/4 , (8pi)/9

In the expansion of ((x)/(costheta)+(1)/(xsintheta))^(16) , if l_(1) is the least value of the term independent of x when (pi)/(8) le theta le (pi)/(4) and l_(2) is the least value of the term independent of x when (pi)/(16) le theta le (pi)/(8) , then the value of (l_(2))/(l_(1)) is

Range of tan^(-1)((2x)/(1+x^2)) is (a) [-pi/4,pi/4] (b) (-pi/2,pi/2) (c) (-pi/2,pi/4) (d) [pi/4,pi/2]

Principle Argument of z=(2+i)/((1+i)^(200)(1-2i)) is 1 dot-pi/4 2. pi/8 3. -pi/2 4. pi/4 5. pi/2