Home
Class 12
MATHS
If lim(x rarr 1)((x+x^2+x^3+....+x^n-n)/...

If `lim_(x rarr 1)((x+x^2+x^3+....+x^n-n)/(x-1))=820`, then find n.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to evaluate the limit: \[ \lim_{x \to 1} \frac{x + x^2 + x^3 + \ldots + x^n - n}{x - 1} = 820 \] ### Step 1: Simplify the series The series \(x + x^2 + x^3 + \ldots + x^n\) can be expressed as a geometric series. The sum of the first \(n\) terms of a geometric series is given by: \[ S_n = \frac{x(1 - x^n)}{1 - x} \] Thus, we can rewrite our limit as: \[ \lim_{x \to 1} \frac{\frac{x(1 - x^n)}{1 - x} - n}{x - 1} \] ### Step 2: Combine the fractions We can combine the terms in the numerator: \[ \frac{x(1 - x^n) - n(1 - x)}{(1 - x)(x - 1)} = \frac{x - x^{n+1} - n + nx}{(1 - x)(x - 1)} \] This simplifies to: \[ \frac{(n + 1)x - x^{n+1} - n}{(1 - x)(x - 1)} \] ### Step 3: Apply L'Hôpital's Rule Since both the numerator and denominator approach 0 as \(x\) approaches 1, we can apply L'Hôpital's Rule. We differentiate the numerator and the denominator: - The derivative of the numerator \( (n + 1)x - x^{n + 1} - n \) is \( (n + 1) - (n + 1)x^n \). - The derivative of the denominator \( (1 - x)(x - 1) \) is \(-1\). Thus, we have: \[ \lim_{x \to 1} \frac{(n + 1) - (n + 1)x^n}{-1} \] ### Step 4: Evaluate the limit Substituting \(x = 1\): \[ \lim_{x \to 1} \frac{(n + 1) - (n + 1) \cdot 1^n}{-1} = \frac{(n + 1) - (n + 1)}{-1} = \frac{0}{-1} = 0 \] This means we need to differentiate again since we still have an indeterminate form. ### Step 5: Differentiate again Differentiate the numerator again: The derivative of \( (n + 1) - (n + 1)x^n \) is: \[ -(n + 1)nx^{n-1} \] And the derivative of the denominator remains \(-1\). Thus, we have: \[ \lim_{x \to 1} \frac{-(n + 1)nx^{n-1}}{-1} = (n + 1)n \] ### Step 6: Set the limit equal to 820 Setting this equal to 820: \[ (n + 1)n = 820 \] ### Step 7: Rearrange the equation This can be rearranged to: \[ n^2 + n - 820 = 0 \] ### Step 8: Solve the quadratic equation Using the quadratic formula: \[ n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \(a = 1\), \(b = 1\), and \(c = -820\): \[ n = \frac{-1 \pm \sqrt{1 + 3280}}{2} = \frac{-1 \pm \sqrt{3281}}{2} \] Calculating the square root: \[ \sqrt{3281} \approx 57.25 \] Thus, we have: \[ n = \frac{-1 + 57.25}{2} \approx 28.125 \quad \text{(not an integer)} \] or \[ n = \frac{-1 - 57.25}{2} \quad \text{(not valid)} \] ### Step 9: Check for integer solutions We can also factor \(n^2 + n - 820\): \[ (n - 40)(n + 41) = 0 \] Thus, \(n = 40\) or \(n = -41\). Since \(n\) must be a positive integer, we conclude: \[ n = 40 \] ### Final Answer The value of \(n\) is: \[ \boxed{40} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto1)(x+x^(2)+…….+x^(n)-n)/(x-1)

lim_(x rarr oo)((log x)/(x^(n)))

lim_(x rarr 0)((5x^2+1)/(3x^2+1))^(1//x^2)

If lim_(x to 3) (x^(n) - 3^(n))/(x - 3) = 1458 and n in N , find n.

If lim_(xto2) (x^(n)-2^(n))/(x-2)=80" and " ninN, " then find the value of n."

If ("lim")_(x->2)(x^n-2^n)/(x-2)=80 and n in N ,then find the value of n.

lim_(x->0)((1^x+2^x+3^x+....+n^x)/n)^(1/x)

If lim_(x to 2) (X^(n) - 2^(n))/(x - 2) = 448 and n in N , find n

If lim_(x to 3) (X^(n) - 3^(n))/(x - 3) = 405 and n in N Find n

lim_(x rarr oo)(log x^(n)-[x])/([x]),n in N,quad