Home
Class 12
MATHS
int0^2||x-1|-x|dx...

`int_0^2||x-1|-x|dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^2 ||x-1|-x| \, dx \), we will break it down step by step. ### Step 1: Analyze the expression inside the integral We need to simplify the expression \( ||x-1|-x| \). 1. **Identify the inner absolute value**: - \( |x-1| \) can be expressed in piecewise form: - \( x-1 \) when \( x \geq 1 \) - \( -(x-1) = 1-x \) when \( x < 1 \) 2. **Now consider the outer absolute value**: - We need to analyze \( ||x-1|-x| \) based on the values of \( x \). ### Step 2: Determine intervals for \( x \) We will break the integral into intervals based on the critical points where the expressions change, which are at \( x = 0, 1, 2 \). - **Interval 1: \( [0, 1) \)** - Here, \( |x-1| = 1-x \) - Thus, \( ||x-1|-x| = |(1-x)-x| = |1-2x| \) - **Interval 2: \( [1, 2] \)** - Here, \( |x-1| = x-1 \) - Thus, \( ||x-1|-x| = |(x-1)-x| = |-1| = 1 \) ### Step 3: Set up the integral Now we can express the integral as: \[ \int_0^2 ||x-1|-x| \, dx = \int_0^1 |1-2x| \, dx + \int_1^2 1 \, dx \] ### Step 4: Evaluate the integral on each interval 1. **Evaluate \( \int_0^1 |1-2x| \, dx \)**: - For \( x \in [0, 1/2] \), \( 1-2x \geq 0 \) so \( |1-2x| = 1-2x \) - For \( x \in [1/2, 1] \), \( 1-2x < 0 \) so \( |1-2x| = -(1-2x) = 2x-1 \) Thus, we split this integral: \[ \int_0^{1/2} (1-2x) \, dx + \int_{1/2}^1 (2x-1) \, dx \] - **Calculate \( \int_0^{1/2} (1-2x) \, dx \)**: \[ = \left[ x - x^2 \right]_0^{1/2} = \left( \frac{1}{2} - \left(\frac{1}{2}\right)^2 \right) = \frac{1}{2} - \frac{1}{4} = \frac{1}{4} \] - **Calculate \( \int_{1/2}^1 (2x-1) \, dx \)**: \[ = \left[ x^2 - x \right]_{1/2}^1 = \left( 1 - 1 \right) - \left( \left(\frac{1}{2}\right)^2 - \frac{1}{2} \right) = 0 - \left( \frac{1}{4} - \frac{1}{2} \right) = \frac{1}{4} \] Therefore, \[ \int_0^1 |1-2x| \, dx = \frac{1}{4} + \frac{1}{4} = \frac{1}{2} \] 2. **Evaluate \( \int_1^2 1 \, dx \)**: \[ = [x]_1^2 = 2 - 1 = 1 \] ### Step 5: Combine the results Now we can combine the results from both intervals: \[ \int_0^2 ||x-1|-x| \, dx = \frac{1}{2} + 1 = \frac{3}{2} \] ### Final Answer The value of the integral is: \[ \boxed{\frac{3}{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^2 |1-x|dx

Evaluate: int_0^1|5x-3|dx (ii) int_0^pi|cosx|dx (iii) int_(-5)^5|x-2|dx (iv) int_(-1)^1e^(|x|)dx (v) int_0^2|x^2+2x-3|dx (v) int_1^4(|x-1|+|x-2|+|x-3|)dx (vi) int_(-1)^2|x^3-x|dx

int_0^4 (2x-1) dx

If [dot]a n d\ {dot} denote respectively the greatest integer and fractional part functional respectively, evaluate the following integral: int_0^1 2^(x-[x])dx

int_0^2{x}^([x])dx

Evaluate: int_0^2[x^2-x+1]dx ,w h e r e[dot] denotos the greatest integer function.

Evaluate: int_0^2[x^2-x+1]dx ,w h e r e[dot] denotos the greatest integer function.

int_-1^1 (sinx+x^2)/(3-|x|)dx= (A) 0 (B) 2int_0^1 sinx/(3-|x|)dx (C) 2int_0^1 x^2/(3-|x|)dx (D) 2int_0^1 (sinx+x^2)/(3-|x|)dx

int_0^1(2-3x+x^2)dx

Evaluate the following integrals as limit of sums: int_0^2(x+4)dx (ii) int_0^2(2x+1)dx