Home
Class 12
MATHS
If alpha and beta are roots of x^2+px+2=...

If `alpha` and `beta` are roots of `x^2+px+2=0` and `1/alpha,1/beta` are the roots of `2x^2+2qx+1=0`. Find the value of `(alpha-1/alpha)(beta-1/beta)(alpha+1/beta)(beta+1/alpha)`

A

`9/4(9-p^2)`

B

`9/4(9+q^2)`

C

`9/4(9+p^2)`

D

`9/4(9-q^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \((\alpha - \frac{1}{\alpha})(\beta - \frac{1}{\beta})(\alpha + \frac{1}{\beta})(\beta + \frac{1}{\alpha})\) given that \(\alpha\) and \(\beta\) are roots of the equation \(x^2 + px + 2 = 0\) and \(\frac{1}{\alpha}, \frac{1}{\beta}\) are roots of the equation \(2x^2 + 2qx + 1 = 0\). ### Step 1: Find \(\alpha + \beta\) and \(\alpha \beta\) From the equation \(x^2 + px + 2 = 0\), we can use Vieta's formulas: - The sum of the roots \(\alpha + \beta = -p\) - The product of the roots \(\alpha \beta = 2\) ### Step 2: Find \(\frac{1}{\alpha} + \frac{1}{\beta}\) and \(\frac{1}{\alpha} \cdot \frac{1}{\beta}\) For the equation \(2x^2 + 2qx + 1 = 0\): - The sum of the roots \(\frac{1}{\alpha} + \frac{1}{\beta} = -\frac{2q}{2} = -q\) - The product of the roots \(\frac{1}{\alpha} \cdot \frac{1}{\beta} = \frac{1}{2}\) Using the relationship for the sum of reciprocals: \[ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} \] Substituting the values we found: \[ -q = \frac{-p}{2} \implies p = 2q \] ### Step 3: Substitute values into the expression The expression we need to evaluate is: \[ (\alpha - \frac{1}{\alpha})(\beta - \frac{1}{\beta})(\alpha + \frac{1}{\beta})(\beta + \frac{1}{\alpha}) \] We can rewrite each term: 1. \(\alpha - \frac{1}{\alpha} = \frac{\alpha^2 - 1}{\alpha}\) 2. \(\beta - \frac{1}{\beta} = \frac{\beta^2 - 1}{\beta}\) 3. \(\alpha + \frac{1}{\beta} = \frac{\alpha \beta + 1}{\beta}\) 4. \(\beta + \frac{1}{\alpha} = \frac{\alpha \beta + 1}{\alpha}\) Thus, the expression becomes: \[ \frac{(\alpha^2 - 1)(\beta^2 - 1)(\alpha \beta + 1)^2}{\alpha \beta^2 \cdot \alpha^2 \beta} \] ### Step 4: Substitute \(\alpha \beta\) and simplify Substituting \(\alpha \beta = 2\): \[ = \frac{(\alpha^2 - 1)(\beta^2 - 1)(2 + 1)^2}{2^2} \] \[ = \frac{(\alpha^2 - 1)(\beta^2 - 1) \cdot 9}{4} \] ### Step 5: Find \(\alpha^2 + \beta^2\) Using the identity: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha \beta \] Substituting the values: \[ = (-p)^2 - 2 \cdot 2 = p^2 - 4 \] ### Step 6: Substitute \(\alpha^2 + \beta^2\) into the expression Now we can express \((\alpha^2 - 1)(\beta^2 - 1)\): \[ (\alpha^2 - 1)(\beta^2 - 1) = \alpha^2 \beta^2 - (\alpha^2 + \beta^2) + 1 \] Substituting \(\alpha^2 \beta^2 = (\alpha \beta)^2 = 4\): \[ = 4 - (p^2 - 4) + 1 = 9 - p^2 \] ### Final Expression Putting it all together: \[ = \frac{9(9 - p^2)}{4} \] Thus, the final value of the expression is: \[ \frac{9(9 - p^2)}{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of 2x^(2) + 5x - 4 = 0 then find the value of (alpha)/(beta) + (beta)/(alpha) .

If alpha , beta are the roots of x^2 +x+1=0 then alpha beta + beta alpha =

If alpha, beta are the roots of x^(2) - px + q = 0 and alpha', beta' are the roots of x^(2) - p' x + q' = 0 , then the value of (alpha - alpha')^(2) + (beta + alpha')^(2) + (alpha - beta')^(2) + (beta - beta')^(2) is

If alpha,beta are the roots of the equation x^(2)+x+1=0 , find the value of alpha^(3)-beta^(3) .

If alpha, beta are the roots of the equation ax^2 + bx +c=0 then the value of (1+alpha+alpha^2)(1+beta+beta^2) is

If alpha , beta are the roots of x^2-p(x+1)+c=0 then (1+alpha )( 1+ beta )=

If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha , beta are the roots of ax^2+bx +c=0 then (1+ alpha + alpha ^2)(1+ beta + beta ^2) is

If alpha,beta be the roots of x^(2)-a(x-1)+b=0 , then the value of (1)/(alpha^(2)-a alpha)+(1)/(beta^(2)-a beta)+(2)/(a+b) is

Let alpha and beta be the roots of x^2 - 5x - 1 = 0 then find the value of (alpha^15 + alpha^11 + beta^15 + beta^11)/(alpha^13 + beta^13) .