Home
Class 12
MATHS
If a1,a2,a3,…….an are in Arithmetic Prog...

If `a_1,a_2,a_3,…….a_n` are in Arithmetic Progression, whose common difference is an integer such that`a_1=1,a_n=300` and `n in[15,50]` then `(S_(n-4),a_(n-4))` is

A

`(2491,247)`

B

`(2490,248)`

C

`(2590,249)`

D

`(248,2490)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the logic presented in the video transcript. ### Step 1: Understand the Arithmetic Progression (AP) Given: - \( a_1 = 1 \) - \( a_n = 300 \) - \( n \) is in the range [15, 50] In an arithmetic progression, the \( n \)-th term can be expressed as: \[ a_n = a_1 + (n - 1) \cdot d \] where \( d \) is the common difference. ### Step 2: Set up the equation using the given values Substituting the known values into the formula: \[ 300 = 1 + (n - 1) \cdot d \] This simplifies to: \[ (n - 1) \cdot d = 299 \] ### Step 3: Factor 299 Next, we need to find the integer factors of 299. The prime factorization of 299 is: \[ 299 = 13 \cdot 23 \] Thus, the pairs of factors (considering \( n - 1 \) and \( d \)) can be: 1. \( n - 1 = 1 \) and \( d = 299 \) 2. \( n - 1 = 13 \) and \( d = 23 \) 3. \( n - 1 = 23 \) and \( d = 13 \) 4. \( n - 1 = 299 \) and \( d = 1 \) ### Step 4: Determine valid \( n \) values We need \( n \) to be in the range [15, 50]. Let's calculate \( n \) for each factor pair: 1. \( n - 1 = 1 \) → \( n = 2 \) (not valid) 2. \( n - 1 = 13 \) → \( n = 14 \) (not valid) 3. \( n - 1 = 23 \) → \( n = 24 \) (valid) 4. \( n - 1 = 299 \) → \( n = 300 \) (not valid) Thus, the only valid option is: \[ n = 24 \quad \text{and} \quad d = 13 \] ### Step 5: Calculate \( a_{n-4} \) Now we need to find \( a_{n-4} \), which is \( a_{20} \): \[ a_{20} = a_1 + (20 - 1) \cdot d \] Substituting the values: \[ a_{20} = 1 + 19 \cdot 13 = 1 + 247 = 248 \] ### Step 6: Calculate \( S_{n-4} \) Next, we calculate \( S_{n-4} = S_{20} \): \[ S_n = \frac{n}{2} \cdot (2a + (n - 1) \cdot d) \] Substituting \( n = 20 \), \( a = 1 \), and \( d = 13 \): \[ S_{20} = \frac{20}{2} \cdot (2 \cdot 1 + (20 - 1) \cdot 13) \] This simplifies to: \[ S_{20} = 10 \cdot (2 + 19 \cdot 13) = 10 \cdot (2 + 247) = 10 \cdot 249 = 2490 \] ### Final Result Thus, the values of \( (S_{n-4}, a_{n-4}) \) are: \[ (S_{20}, a_{20}) = (2490, 248) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a_1,a_2,a_3,…………..a_n are in A.P. whose common difference is d, show tht sum_2^ntan^-1 d/(1+a_(n-1)a_n)= tan^-1 ((a_n-a_1)/(1+a_na_1))

If a_1,a_2,a_3, a_n are in arithmetic progression with common difference d , then evaluate the following expression: tan{tan^(-1)(d/(1+a_1a_2))+tan^(-1)(d/(1+a^2a_3))+tan^(-1)(d/(1+a_3a_4))++tan^(-1)(d/(1+a_(n-1)a_n))}

If a_1,\ a_2,\ a_3,\ ,\ a_n are in arithmetic progression with common difference d , then evaluate the following expression: tan{tan^(-1)(d/(1+a_1a_2))+tan^(-1)(d/(1+a_2a_3))+tan^(-1)(d/(1+a_3a_4))+....+tan^(-1)(d/(1+a_(n-1)a_n))}

Let A_1 , A_2 …..,A_3 be n arithmetic means between a and b. Then the common difference of the AP is

If a_1,a_2,……….,a_n are in H.P. then expression a1a2+a2a3+......+a_n-1an

If a_1,a_2,a_3,……..a_n, a_(n+1),…….. be A.P. whose common difference is d and S_1=a_1+a_2+……..+a_n, S_2=a_(n+1)+………..+a_(2n), S_3=a_(2n+1)+…………+a_(3n) etc show that S_1,S_2,S_3, S_4………… are in A.P. whose common difference is n^2d .

If a_1,a_2,a_3,....a_n are positive real numbers whose product is a fixed number c, then the minimum value of a_1+a_2+....+a_(n-1)+3a_n is

Let a_1, a_2, a_3, ,a_(100) be an arithmetic progression with a_1=3a n ds_p=sum_(i=1)^p a_i ,1lt=plt=100. For any integer n with 1lt=nlt=20 , let m=5ndot If (S_m)/(S_n) does not depend on n , then a_2 is__________.

If a_1,a_2,a_3,....a_n are positive real numbers whose product is a fixed number c, then the minimum value of a_1+a_2+.......a_(n-1)+2a_n is

If a_1, a_2,a_3, ,a_n is an A.P. with common difference d , then prove that "tan"[tan^(-1)(d/(1+a_1a_2))+tan^(-1)(d/(1+a_2a_3))+tan^(-1)(d/(1+a_(n-1)a_n))]=((n-1)d)/(1+a_1a_n)