Home
Class 12
MATHS
If lim(t rarr x)(x^2f^2(t)-t^2f^2(x))/(t...

If `lim_(t rarr x)(x^2f^2(t)-t^2f^2(x))/(t-x)=0` and `f(1)=e` then solution of `f(x)=1` is

A

`1/e`

B

`1/(2e)`

C

`e`

D

`2e`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(trarrx)(e^(t)f(x)-e^(x)f(t))/((t-x)(f(x))^(2))=2 andf(0)=(1)/(2), then find the value of f'(0).

If lim_(trarrx) (e^(t)f(x)-e^(x)f(t))/((t-x)(f(x))^(2))=2 andf(0)=(1)/(2), then find the value of f'(0).

If f(x) is differentiable function in the interval (0,oo) such that f(1) = 1 and lim_(trarrx) (t^(2)f(x)-x^(2)(t))/(t-x)=1 for each x gt 0 , then f((3)/(2)) is equal tv

Let f: R rarr R be a continuous odd function, which vanishes exactly at one point and f(1)=1/2 . Suppose that F(x)=int_(-1)^xf(t)dt for all x in [-1,2] and G(x)=int_(-1)^x t|f(f(t))|dt for all x in [-1,2] . If lim_(x rarr 1)(F(x))/(G(x))=1/(14) , Then the value of f(1/2) is

Let f:(0,pi) rarr R be a twice differentiable function such that lim_(t rarr x) (f(x)sint-f(t)sinx)/(t-x) = sin^(2) x for all x in (0,pi) . If f((pi)/(6))=(-(pi)/(12)) then which of the following statement (s) is (are) TRUE?

Let f:R in R be a continuous function such that f(1)=2. If lim_(x to 1) int_(2)^(f(x)) (2t)/(x-1)dt=4 , then the value of f'(1) is

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If f(x)=t^(2)+(3)/(2)t , then f(q-1)=

If f(x)=3-2x+x^(2) , then ((f(x+t)-f(x))/(t)) =

Let f (x) be a diffentiable function in [-1,oo) and f (0) =1 such that Lim _(t to x +1) (t^(2) f(x+1) -(x+1) ^(2) f(t))/(f (t) -f(x+1))=1. Find the value of Lim _(x to 1) (ln (f(x )) -ln 2)/(x-1) .