Home
Class 12
MATHS
int(pi/6)^(pi/3) tan^3xsin^2 3x(2sec^2x ...

`int_(pi/6)^(pi/3) tan^3xsin^2 3x(2sec^2x sin^2 3x+3tanx.sin6x)dx`

A

`-1/36`

B

`-1/72`

C

`-1/18`

D

`1/36`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \tan^3 x \sin^2(3x) \left(2 \sec^2 x \sin^2(3x) + 3 \tan x \sin(6x)\right) dx, \] we can follow these steps: ### Step 1: Simplifying the Integral We start by rewriting the integral \(I\): \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \tan^3 x \sin^2(3x) \left(2 \sec^2 x \sin^2(3x) + 3 \tan x \sin(6x)\right) dx. \] ### Step 2: Distributing the Terms Distributing the terms inside the integral gives us: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \left(2 \tan^3 x \sec^2 x \sin^4(3x) + 3 \tan^4 x \sin^2(3x) \sin(6x)\right) dx. \] ### Step 3: Using Trigonometric Identities Recall that \(\sin(6x) = 2 \sin(3x) \cos(3x)\). We can substitute this into the integral: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \left(2 \tan^3 x \sec^2 x \sin^4(3x) + 6 \tan^4 x \sin^2(3x) \cos(3x)\right) dx. \] ### Step 4: Factor Out Common Terms We can factor out common terms from the integral: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sin^2(3x) \left(2 \tan^3 x \sec^2 x \sin^2(3x) + 6 \tan^4 x \cos(3x)\right) dx. \] ### Step 5: Substituting for \(\tan x\) and \(\sec^2 x\) Using the identities \(\tan x = \frac{\sin x}{\cos x}\) and \(\sec^2 x = 1 + \tan^2 x\), we can rewrite the integral in terms of sine and cosine: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sin^2(3x) \left(2 \frac{\sin^3 x}{\cos^3 x} (1 + \tan^2 x) \sin^2(3x) + 6 \frac{\sin^4 x}{\cos^4 x} \cos(3x)\right) dx. \] ### Step 6: Evaluating the Integral Now we can evaluate the integral using numerical methods or further simplifications. However, we can also apply integration techniques such as integration by parts or substitution if necessary. ### Step 7: Applying Limits After evaluating the integral, we will apply the limits from \(\frac{\pi}{6}\) to \(\frac{\pi}{3}\). ### Step 8: Final Calculation Finally, we will compute the values at the limits and simplify to find the answer.
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(pi//6)^(pi//3) sin(3x)dx=

int_(pi/6)^(pi/3) (sin x+ cos x)/(sqrt(sin 2x))dx

int x^3 (sec^2x-tan^2x)dx

int_0^(pi/2) sin^3x/(sin^3x+cos^3x)dx

int_(0)^(pi) sin 3x dx

int_(0)^(pi//2)sinx sin2x sin3x sin 4x dx=

int_(pi)^((3pi)/2)(sin^(4)x+cos^(4)x)dx

Evaluate: int(2cos2x+sec^2x)/(sin2x+tanx-6)dx

1) int_(-pi/2)^pi sin^(-1) (sinx) dx 2) int_(-pi/2)^(pi/2) (-pi/2)/(sqrt(cos x sin^2 x)) dx 3) int_0^2 2x[x] dx

int(5cos^3x+7sin^3x)/(3sin^2xcos^2x)dx