Home
Class 12
MATHS
Let A is 3 xx 3 matrix such that Ax1=B1,...

Let `A` is `3 xx 3` matrix such that `Ax_1=B_1,Ax_2=B_2,Ax_3=B_3` where
`x_1=[[1],[1],[1]],x_2=[[0],[2],[1]],x_3=[[0],[0],[1]]` ,br> `B_1=[[1],[0],[0]],B_2=[[0],[2],[0]],B_3=[[0],[0],[2]]` then find `|A|`.

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To find the determinant of the matrix \( A \) given the equations \( A x_1 = B_1 \), \( A x_2 = B_2 \), and \( A x_3 = B_3 \), we will follow these steps: ### Step 1: Define the Matrix \( A \) Let \( A \) be represented as: \[ A = \begin{pmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{pmatrix} \] ### Step 2: Use the First Equation \( A x_1 = B_1 \) From the first equation \( A x_1 = B_1 \) where \( x_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \) and \( B_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \): \[ A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \] This leads to the equations: 1. \( a_1 + a_4 + a_7 = 1 \) 2. \( a_2 + a_5 + a_8 = 0 \) 3. \( a_3 + a_6 + a_9 = 0 \) ### Step 3: Use the Second Equation \( A x_2 = B_2 \) From the second equation \( A x_2 = B_2 \) where \( x_2 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \) and \( B_2 = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} \): \[ A \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} \] This leads to the equations: 1. \( 2a_4 + a_7 = 0 \) 2. \( 2a_5 + a_8 = 2 \) 3. \( 2a_6 + a_9 = 0 \) ### Step 4: Use the Third Equation \( A x_3 = B_3 \) From the third equation \( A x_3 = B_3 \) where \( x_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \) and \( B_3 = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} \): \[ A \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} \] This leads to the equations: 1. \( a_7 = 0 \) 2. \( a_8 = 0 \) 3. \( a_9 = 2 \) ### Step 5: Substitute Known Values From the equations derived from \( A x_3 = B_3 \): - \( a_7 = 0 \) - \( a_8 = 0 \) - \( a_9 = 2 \) Now substitute these values into the equations from \( A x_1 = B_1 \): 1. \( a_1 + a_4 + 0 = 1 \) → \( a_1 + a_4 = 1 \) 2. \( a_2 + a_5 + 0 = 0 \) → \( a_2 + a_5 = 0 \) 3. \( a_3 + a_6 + 2 = 0 \) → \( a_3 + a_6 = -2 \) Now substitute into the equations from \( A x_2 = B_2 \): 1. \( 2a_4 + 0 = 0 \) → \( a_4 = 0 \) 2. \( 2a_5 + 0 = 2 \) → \( a_5 = 1 \) 3. \( 2a_6 + 2 = 0 \) → \( a_6 = -1 \) ### Step 6: Solve for Remaining Variables Substituting \( a_4 = 0 \) into \( a_1 + a_4 = 1 \): - \( a_1 + 0 = 1 \) → \( a_1 = 1 \) Substituting \( a_5 = 1 \) into \( a_2 + a_5 = 0 \): - \( a_2 + 1 = 0 \) → \( a_2 = -1 \) Substituting \( a_6 = -1 \) into \( a_3 + a_6 = -2 \): - \( a_3 - 1 = -2 \) → \( a_3 = -1 \) ### Step 7: Construct Matrix \( A \) Now we have: \[ A = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{pmatrix} \] ### Step 8: Calculate the Determinant of \( A \) The determinant of \( A \) can be calculated as follows: \[ |A| = 1 \cdot (1 \cdot 2 - (-1) \cdot 0) - (-1) \cdot (0 \cdot 2 - (-1) \cdot 0) + (-1) \cdot (0 \cdot (-1) - 1 \cdot 0) \] Calculating: \[ |A| = 1 \cdot 2 - 0 + 0 = 2 \] ### Final Answer Thus, the determinant of matrix \( A \) is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[3,2],[0,5]]and B=[[1,0],[1,2]] then find (A+B)(A-B)

Find a matrix X such that A+2B+X=0 where A= [[2,-1],[3,5]], B[[-1,1],[0,2]]

Find a matrix X such tht 3A-2B+X=0, where A=[[4,2],[1,3]] , B= [[-2,1], [3,2]]

Find a matrix X such that 2A - B + X =0 where A = [[3,1],[0,2]] and B = [[-2,1],[0,3]]

If A=[[2,1,3],[4,1,0]] and B=[[1,-1],[0,2],[5,0]] find AB and BA.

Find a 2x2 matrix B such that B[1-2 1 4]=[6 0 0 6]

If A=[[1,2,3],[2,0,-2]],B=[[1,1,-1],[2,0,3],[3,-1,2]] and C=[[1,3],[0,2],[-1,4]] find A(BC).

If A=[[2,1,3],[4,1,0]], B=[[1,-1],[0,2],[5,0]] , verify that (AB)\'=B\'A\'

If A=[[1,2,-3] , [5,0,2] , [1,-1,1]] and B=[[3,-1,2] , [4,2,5] , [2,0,3]] then find matrix C such that A+2C=B

If A_(0) = [[2 ,-2,-4],[-1,3,4],[1,-2,-3]] and B_(0)= [[-4,-4,-4],[1,0,1],[4,4,3]] then find A_0-B_O