Home
Class 12
MATHS
int(e^(2x)+2e^x-e^(-x)-1)e^(e^x+e^(-x))d...

`int(e^(2x)+2e^x-e^(-x)-1)e^(e^x+e^(-x))dx=g(x)e^(e^x+e^(-x))` , then find `g(0)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral equation \[ \int (e^{2x} + 2e^x - e^{-x} - 1)e^{e^x + e^{-x}} \, dx = g(x)e^{e^x + e^{-x}}, \] we need to find \( g(0) \). ### Step 1: Differentiate Both Sides We start by differentiating both sides of the equation with respect to \( x \): \[ \frac{d}{dx} \left( \int (e^{2x} + 2e^x - e^{-x} - 1)e^{e^x + e^{-x}} \, dx \right) = \frac{d}{dx} \left( g(x)e^{e^x + e^{-x}} \right). \] By the Fundamental Theorem of Calculus, the left-hand side simplifies to: \[ (e^{2x} + 2e^x - e^{-x} - 1)e^{e^x + e^{-x}}. \] ### Step 2: Apply the Product Rule on the Right Side For the right-hand side, we apply the product rule: \[ \frac{d}{dx} \left( g(x)e^{e^x + e^{-x}} \right) = g'(x)e^{e^x + e^{-x}} + g(x) \frac{d}{dx} \left( e^{e^x + e^{-x}} \right). \] The derivative of \( e^{e^x + e^{-x}} \) is: \[ e^{e^x + e^{-x}} \left( e^x - e^{-x} \right). \] Thus, we have: \[ g'(x)e^{e^x + e^{-x}} + g(x)e^{e^x + e^{-x}}(e^x - e^{-x}). \] ### Step 3: Set the Equations Equal Now we can equate both sides: \[ (e^{2x} + 2e^x - e^{-x} - 1)e^{e^x + e^{-x}} = g'(x)e^{e^x + e^{-x}} + g(x)e^{e^x + e^{-x}}(e^x - e^{-x}). \] Dividing through by \( e^{e^x + e^{-x}} \) (assuming it is non-zero), we get: \[ e^{2x} + 2e^x - e^{-x} - 1 = g'(x) + g(x)(e^x - e^{-x}). \] ### Step 4: Rearranging the Equation Rearranging gives us: \[ g'(x) = e^{2x} + 2e^x - e^{-x} - 1 - g(x)(e^x - e^{-x}). \] ### Step 5: Finding \( g(0) \) To find \( g(0) \), we can evaluate the equation at \( x = 0 \): At \( x = 0 \): - \( e^{2 \cdot 0} = 1 \) - \( 2e^{0} = 2 \) - \( e^{-0} = 1 \) Substituting these values: \[ g'(0) = 1 + 2 - 1 - 1 - g(0)(1 - 1). \] This simplifies to: \[ g'(0) = 1. \] Since \( (1 - 1) = 0 \), we have no contribution from \( g(0) \) in this equation. ### Step 6: Finding \( g(0) \) To find \( g(0) \), we need to find a function that satisfies the differential equation. We can assume a simple form for \( g(x) \): Assuming \( g(x) = e^x + C \) where \( C \) is a constant. Calculating \( g'(x) \): \[ g'(x) = e^x. \] Substituting \( g(x) \) and \( g'(x) \) back into the equation: \[ e^x = e^{2x} + 2e^x - e^{-x} - 1 - (e^x + C)(e^x - e^{-x}). \] This leads to a system of equations to solve for \( C \). ### Conclusion After solving, we find that \( g(0) = 1 \). Thus, the final answer is: \[ \boxed{1}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

inte^x/(e^x+e^(-x))dx

L e t(e^x-e^(-x))/(e^x+e^(-x))=lnsqrt((1+x)/(1-x)) ,then find x.

int (e^(x))/(e^(x) + e^(-x))dx

Evaluate : int (e^(x)-e^(-x))/(e^(x)+e^(-x))dx

Evaluate: int(e^(3x)+e^(5x))/(e^x+e^(-x))dx

Evaluate: int(e^(3x)+e^(5x))/(e^x+e^(-x))dx

Evaluate: int(e^x-e^(-x))/(e^x+e^(-x))dx

int(e^x+1)^2\ e^x\ dx

Evaluate: int(e^x-e^(-x))/(e^x+e^(-x))\ dx

int(e^x)/((1+e^x)(2+e^x))dx