Home
Class 12
CHEMISTRY
For galvanic cell M^(2+)(aq) + Zn(s) r...

For galvanic cell
`M^(2+)(aq) + Zn(s) rarr M(s) +Zn^(2+)(aq)` `triangleG^@` = -386KJ/mole
the value of `E^@_(cell)` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( E^\circ_{\text{cell}} \) for the given galvanic cell reaction, we can use the relationship between Gibbs free energy change (\( \Delta G^\circ \)) and the cell potential (\( E^\circ_{\text{cell}} \)). The equation is: \[ \Delta G^\circ = -nFE^\circ_{\text{cell}} \] Where: - \( \Delta G^\circ \) is the standard Gibbs free energy change. - \( n \) is the number of moles of electrons transferred in the reaction. - \( F \) is the Faraday constant (\( 96500 \, \text{C/mol} \)). - \( E^\circ_{\text{cell}} \) is the standard cell potential. ### Step 1: Convert \( \Delta G^\circ \) to Joules Given \( \Delta G^\circ = -386 \, \text{kJ/mol} \), we need to convert this to Joules: \[ \Delta G^\circ = -386 \times 1000 \, \text{J/mol} = -386000 \, \text{J/mol} \] ### Step 2: Determine the number of electrons transferred (\( n \)) From the balanced cell reaction: \[ \text{M}^{2+}(aq) + \text{Zn}(s) \rightarrow \text{M}(s) + \text{Zn}^{2+}(aq) \] We can see that 2 electrons are transferred (since \( \text{M}^{2+} \) gains 2 electrons to become \( \text{M} \)). Therefore, \( n = 2 \). ### Step 3: Substitute values into the equation Now we can substitute the values into the equation: \[ -386000 = -nFE^\circ_{\text{cell}} \] Substituting \( n = 2 \) and \( F = 96500 \): \[ -386000 = -2 \times 96500 \times E^\circ_{\text{cell}} \] ### Step 4: Solve for \( E^\circ_{\text{cell}} \) Rearranging the equation gives: \[ E^\circ_{\text{cell}} = \frac{386000}{2 \times 96500} \] Calculating the denominator: \[ 2 \times 96500 = 193000 \] Now substituting back: \[ E^\circ_{\text{cell}} = \frac{386000}{193000} \approx 2 \, \text{V} \] ### Final Answer The value of \( E^\circ_{\text{cell}} \) is approximately \( 2 \, \text{V} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

For the galvanic cell Zn(s)abs(Zn^(2+) ) abs(Cd^(2+)) Cd(s),E_(cell ) = 0.30 V and E_(cell)^(o) = 0.36 V, then value of [Cd^(2+)]//[Zn^(2+)] will be:

For the galvanic cell: Zn(s) | Zn^(2+)(aq) (1.0 M) || Ni^(2+)(aq) (1.0 M) | Ni(s) , E_(cell)^o will be [Given E_((Zn^(2+)) /(Zn))^0 = -0.76 V , E_((Ni^(2+))/(Ni))^0= -0.25V ]

Depict the galvanic cell in which the reaction : Zn(s)+2Ag^(o+)(aq) rarr Zn^(2+)(aq)+2Ag(s) takes place. Further show : a. Which of the electrode is negatively charged ? b. The carriers of the current in the cell. c. Individual reaction at each electrode.

The electrode potentials for M^(2+)(aq) + e^(-) → M^+(aq) and M^+(aq)+ e^(-) → M(s) are 0.25 V and 0.60 V respectively.The value of E^@_M^(2+)/M is

The measured e.m.f. at 25^(@)C for the cell reaction, Zn(s) +XCu^(2+)._((eq))(0.1M) rarr Cu(s) ._((aq)) +Zn^(2+)(1.0M) is 1.3 volt, calculate E^(@) for the cell reaction.

For the redox reaction Zn(s) + Cu^(2+) (0.1M) rarr Zn^(2+) (1M) + Cu(s) that takes place in a cell, E^(o)""_(cell) is 1.10 volt. E_(cell) for the cell will be:

The value of equilibrium constant for the reactions Cu^(2+) (aq) + zn ( s) hArr Cu(s) + Zn^(2+) (aq) is 5.0 xx 10 ^(8) in Which direction the reaction is expected to proceed to a greater extent ?

For the galvanic cell Mg(s)|Mg^(2+)(aq)||Zn^(2+)(aq)|Zn(s) ,the standard free energy change is ( Given:E_((mg^(2+))/(mg))^@= -2.36 V,E_((Zn^(2+))/(Zn))^@= -0.76 V)

For the cell reaction Cu^(2+)(C_(1),aq.)+Zn(s)hArrZn^(2+)(C_(2),aq)+Cu(s) of an electrochemical cell, the change in free energy (DeltaG) at a given temperature is a function of

For the galvanic cell Zn(s)[Zn^2+ (aq)||Ag^+(aq) Ag(s)] , G° of the reaction in joule will be E°_ (Zn^(2+) / Zn )= - 0.76V , E°_( Ag_+/Ag )= 0.80 V