Home
Class 11
PHYSICS
For any three vectors vec(A), vec(B) and...

For any three vectors `vec(A), vec(B)` and `vec(C)` prove that
`vec(A) xx (vec(B) +vec(C)) +vec(B) xx (vec(C) +vec(A)) + vec(C) xx (vec(A) +vec(B)) = vec(O)`

Promotional Banner

Topper's Solved these Questions

  • Motion in a Plane

    SL ARORA|Exercise Excercise|397 Videos
  • Motion in a Plane

    SL ARORA|Exercise Excercise|397 Videos
  • MECHANICS

    SL ARORA|Exercise Exercise|341 Videos
  • MOTION IN ONE DIMENSION

    SL ARORA|Exercise problems for self practice|66 Videos

Similar Questions

Explore conceptually related problems

For any three vectors vec a, vec b & vec c prove that (vec b xxvec c) xx (vec c xxvec a) = [vec with bvec c] vec c

Prove that vec(a)xx(vec(b)+vec(c))+vec(b)xx(vec(c)+vec(a))+vec(c)xx(vec(a)+vec(b))=0

Let three vectors vec(a), vec(b) and vec(c ) be such that vec(a) xx vec(b) = vec(c), vec(b) xx vec(c) = vec(a) and |vec(a)| = 2 . Then which one of the following is not true ?

The vectors vec(a), vec(b), vec(c ) and vec(d) are such that vec(a) xx vec(b) = vec(c ) xx vec(d) and vec(a) xx vec(c )= vec(b) xx vec(d) . Which of the following is/are correct? 1. (vec(a)- vec(d)) xx (vec(b) - vec(c ))= vec(0) 2. (vec(a) xx vec(b))xx (vec(c ) xx vec(d))= vec(0) Select the correct answer using the codes given below

[(vec(a) xx vec(b)) xx (vec(b) xx vec(c)), (vec(b) xx vec(c)) xx (vec(c) xx vec(a)),(vec(c) xx vec(a)) xx (vec(a) xx vec(b))] is equal to

If vec(A)+vec(B)+vec(C )=0 then vec(A)xx vec(B) is

Let vec(a), vec(b), vec(c) be three vectors mutually perpendicular to each other and have same magnitude. If a vector vec(r) satisfies vec(a) xx {(vec(r) - vec(b)) xx vec(a)} + vec(b) xx {(vec(r) - vec(c)) xx vec(b)} + vec(c) xx {(vec(r) - vec(a)) xx vec(c)} = vec(0) , then vec(r) is equal to :

Prove that : {(vec(b)+vec(c ))xx(vec(c )+vec(a))}.(vec(a)+vec(b))=2[vec(a)vec(b)vec(c )]

Prove that : (vec(b)+vec(c )).{(vec(c )+vec(a))xx(vec(a)+vec(b))}=2 [vec(a)vec(b)vec(c )] .

SL ARORA-Motion in a Plane-Example
  1. Determine the sine of the angle between the vectors ( 3 hat i+ 3hat j+...

    Text Solution

    |

  2. Show that (vec(A) - vec(B)) xx (vec(A) +vec(B)) = 2(vec(A) xx vec(B))

    Text Solution

    |

  3. For any three vectors vec(A), vec(B) and vec(C) prove that vec(A) x...

    Text Solution

    |

  4. For any to vectors vec A and vec B, prove that | vec A xx vec B|^2 ...

    Text Solution

    |

  5. Find vec(A).vec(B) if |vec(A)| = 2, |vec(B)| = 5 and |vec(A) xx vec(B)...

    Text Solution

    |

  6. Find the area of the rriangle formed by the tips of the vectors, ve...

    Text Solution

    |

  7. Find the magnitude and direction cosines of the torque about the point...

    Text Solution

    |

  8. Find the area of parallelogram whose diagonals are the vectors 3 hat i...

    Text Solution

    |

  9. In any triangle ABC, prove that a sin A-b sin B -=c sin (A-B).

    Text Solution

    |

  10. If vec a ,\ vec b ,\ vec c are three vectors such that vec adot...

    Text Solution

    |

  11. If vec A=hat i + 2 hat j -3 hat k, vec B =2 hat I -hat j + hat k and...

    Text Solution

    |

  12. A cyclist moves along a circular path of radius 70 m. If he completes ...

    Text Solution

    |

  13. A cyclist moves along a circular path of radius 70 m. If he completes ...

    Text Solution

    |

  14. A cyclist moves along a circular path of radius 70 m. If he completes ...

    Text Solution

    |

  15. A cyclist moves along a circular path of radius 70 m. If he completes ...

    Text Solution

    |

  16. A particle is moving eastwards with a velocity of 5 ms(-1). In 10 sec...

    Text Solution

    |

  17. The position of a particle is given by r = 3t hati +2t^(2) hatj +8 h...

    Text Solution

    |

  18. The position of of a particle is given by vec r =3.0 t hat I + 2.0 t^(...

    Text Solution

    |

  19. If the position vector of a particle is given by vec r =(94 cos 2t) ha...

    Text Solution

    |

  20. A boat is moving with a velocity (3hati +hatj) with respect to ground....

    Text Solution

    |