Home
Class 11
CHEMISTRY
In Rutherford experiment generally the...

In Rutherford experiment generally the thin foil of heavy atoms like gold platinum etc have been used to be bombarded by the `alpha-` particles If the thin foil of light atoms like aluminium etc is used what difference would be observed from the above results

Text Solution

Verified by Experts

Deviated `alpha`- particles are less and bounce back `alpha`- particles are least . Because in heavy atom the nuclear can scatter more `alpha`- particle .
If lighter atoms are used like aluminium than their nuclear possess less mass less charge so derivation is alsoo loss.
Promotional Banner

Topper's Solved these Questions

  • STRUCTURE OF ATOM

    KUMAR PRAKASHAN|Exercise Section -A (Try Your Self -1)|4 Videos
  • STRUCTURE OF ATOM

    KUMAR PRAKASHAN|Exercise Section -A (Try Your Self -2)|5 Videos
  • STATES OF MATTER

    KUMAR PRAKASHAN|Exercise QUESTION PAPER FROM MODULE (SECTION - A)|4 Videos
  • THE P-BLOCK ELEMENTS

    KUMAR PRAKASHAN|Exercise SECTION-D NCERT EXEMPLAR SOLUTION (MCQs) LONG ANSWER|25 Videos

Similar Questions

Explore conceptually related problems

In Rutherford experiment if light atoms used instead of heavy elements than what change is observed in results ?

Suppose you are given a chance to repeat the alpha- particle scattering experiment using a thin sheet of solid hydrogen in place of the gold foil. (Hydrogen is a solid at temperatures below 14 K.) What results do you expect?

An electromagnetic wave can be represented by E = A sin (kx- omega t + phi) , where E is electric field associated with wave, According this equation, for any value of x, E remains sinusoidal for -oolt t lt oo . Obviously this corresponds to an idealised situation because radiation from ordinary sources consists of finite size wavetrains. In general, electric field remains sinusoidal only for times of order tau_(c) ' which is called coherence time. In simpler language it means that for times of order tau_(c)' a wave will have a definite phase. The finite value of coherence time could be due to many factors, for example if radiating atom undergoes collision with another atom then wave train undergoes an abrupt phase change or due to the fact that an atom responsible for emitting radiation has a finite life time in the energy level from which it drops to lower energy level, while radiating. Concept of coherence time can be easily understood using young's double slit experiment. Let interference patten is observed around point P at time t , due to superposition of waves emanting from S_(1) and S_(2) at times t =(r_(1))/(c) and (r_(2))/(c) respectively, where r_(1) and r_(2) are the distances S_(1) P & S_(2)P . Obviously if (r_(2)-r_(1))/(c) lt lt tau_(e),{"where" " "c = 3xx10^(8)m//s} then, wavetrain arriving at point P from S_(1) & S_(2) will have a definite phase relationship and an interference pattern of good contranst will be obtained. If coherence time is of order 10^(-10) second and screen is placed at a very large distance from slits in the given figure, then:-

An electromagnetic wave can be represented by E = A sin (kx- omega t + phi) , where E is electric field associated with wave, According this equation, for any value of x, E remains sinusoidal for -oolt t lt oo . Obviously this corresponds to an idealised situation because radiation from ordinary sources consists of finite size wavetrains. In general, electric field remains sinusoidal only for times of order tau_(c) ' which is called coherence time. In simpler language it means that for times of order tau_(c)' a wave will have a definite phase. The finite value of coherence time could be due to many factors, for example if radiating atom undergoes collision with another atom then wave train undergoes an abrupt phase change or due to the fact that an atom responsible for emitting radiation has a finite life time in the energy level from which it drops to lower energy level, while radiating. Concept of coherence time can be easily understood using young's double slit experiment. Let interference patten is observed around point P at time t , due to superposition of waves emanting from S_(1) and S_(2) at times t =(r_(1))/(c) and (r_(2))/(c) respectively, where r_(1) and r_(2) are the distances S_(1) P & S_(2)P . Obviously if (r_(2)-r_(1))/(c) lt lt tau_(e),{"where" " "c = 3xx10^(8)m//s} then, wavetrain arriving at point P from S_(1) & S_(2) will have a definite phase relationship and an interference pattern of good contranst will be obtained. If coherence time is of order 10^(-10) second and screen is placed at a very large distance from slits in the given figure, then:-