Home
Class 12
MATHS
Evaluate the integral I = int(0)^(5) s...

Evaluate the integral
`I = int_(0)^(5) sqrt(25 -x^(2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{5} \sqrt{25 - x^2} \, dx, \] we can recognize that the integrand \(\sqrt{25 - x^2}\) resembles the equation of a semicircle. Specifically, it represents the upper half of a circle with radius 5 centered at the origin. ### Step 1: Identify the geometric interpretation The equation \(x^2 + y^2 = 25\) describes a circle with radius 5. The integral we are evaluating corresponds to the area under the curve from \(x = 0\) to \(x = 5\). ### Step 2: Set up the integral using trigonometric substitution To evaluate the integral, we can use the substitution \(x = 5 \sin \theta\). Then, \(dx = 5 \cos \theta \, d\theta\). The limits change as follows: - When \(x = 0\), \(\theta = 0\). - When \(x = 5\), \(\theta = \frac{\pi}{2}\). ### Step 3: Rewrite the integral Substituting into the integral, we have: \[ I = \int_{0}^{\frac{\pi}{2}} \sqrt{25 - (5 \sin \theta)^2} \cdot 5 \cos \theta \, d\theta. \] This simplifies to: \[ I = \int_{0}^{\frac{\pi}{2}} \sqrt{25(1 - \sin^2 \theta)} \cdot 5 \cos \theta \, d\theta. \] Since \(1 - \sin^2 \theta = \cos^2 \theta\), we can simplify further: \[ I = \int_{0}^{\frac{\pi}{2}} \sqrt{25} \cdot \cos \theta \cdot 5 \cos \theta \, d\theta = 25 \int_{0}^{\frac{\pi}{2}} \cos^2 \theta \, d\theta. \] ### Step 4: Evaluate the integral Now, we use the identity \(\cos^2 \theta = \frac{1 + \cos(2\theta)}{2}\): \[ I = 25 \int_{0}^{\frac{\pi}{2}} \frac{1 + \cos(2\theta)}{2} \, d\theta = \frac{25}{2} \left[ \theta + \frac{1}{2} \sin(2\theta) \right]_{0}^{\frac{\pi}{2}}. \] Calculating the limits: - At \(\theta = \frac{\pi}{2}\): \[ \frac{\pi}{2} + \frac{1}{2} \sin(\pi) = \frac{\pi}{2} + 0 = \frac{\pi}{2}. \] - At \(\theta = 0\): \[ 0 + \frac{1}{2} \sin(0) = 0. \] Thus, \[ I = \frac{25}{2} \left( \frac{\pi}{2} - 0 \right) = \frac{25\pi}{4}. \] ### Final Result The value of the integral is \[ \boxed{\frac{25\pi}{4}}. \]
Promotional Banner

Topper's Solved these Questions

  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6.2 (Evaluating Definite Integrals by the Newton-Leibnitz formula)|17 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6.3 (Estimating an Integral. The Definite Integral as a Function of Its Limits)|17 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos