Home
Class 12
MATHS
show that (a) int(0) ^(2pi) sin ^(3)...

show that
(a) `int_(0) ^(2pi) sin ^(3) x dx = 0` ,
(b) `int_(-1)^(1) e^(-x^(2)) dx = 2 int_(0)^(1) e^(-x^(2)) dx`

Text Solution

Verified by Experts

The correct Answer is:
`int_(0) ^(2 pi) sin^(3) x dx = 0`
Promotional Banner

Topper's Solved these Questions

  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6.2 (Evaluating Definite Integrals by the Newton-Leibnitz formula)|17 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6.3 (Estimating an Integral. The Definite Integral as a Function of Its Limits)|17 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi) e^(x) sin 2 x dx=

I=int_(0)^(1)e^(x^(2)-x)dx then

If int_(0)^(1) x e^(x^(2) ) dx=alpha int_(0)^(1) e^(x^(2)) dx , hten

int_(0)^(pi/2) sin^(-1)(sin x)dx

int_(0)^(1)(e^(x))/(1+e^(2x))dx

int_(0)^(1)e^(2x)e^(e^(x) dx =)

int_(0)^(2) (e^(-1//x))/(x^(2)) dx

int_(0)^(1)x^2e^(2x)dx

int_(0)^( pi)(x)/(1+sin^(2)x)dx