Home
Class 12
MATHS
Evaluate the integral I = int(0)^(1) ...

Evaluate the integral
`I = int_(0)^(1) (I n (1 + x))/( 1 + x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{1} \frac{\ln(1 + x)}{1 + x} \, dx, \] we will follow these steps: ### Step 1: Substitution Let \( t = \ln(1 + x) \). Then, we differentiate both sides to find \( dx \) in terms of \( dt \). \[ \frac{dt}{dx} = \frac{1}{1 + x} \implies dx = (1 + x) \, dt. \] ### Step 2: Change of Limits Next, we need to change the limits of integration. When \( x = 0 \): \[ t = \ln(1 + 0) = \ln(1) = 0. \] When \( x = 1 \): \[ t = \ln(1 + 1) = \ln(2). \] Thus, the limits change from \( x = 0 \) to \( x = 1 \) into \( t = 0 \) to \( t = \ln(2) \). ### Step 3: Substitute in the Integral Now we can substitute \( x \) in terms of \( t \). From \( t = \ln(1 + x) \), we have \( 1 + x = e^t \). Therefore, \[ dx = e^t \, dt. \] Substituting these into the integral gives: \[ I = \int_{0}^{\ln(2)} \frac{t}{e^t} e^t \, dt = \int_{0}^{\ln(2)} t \, dt. \] ### Step 4: Evaluate the Integral Now we can evaluate the integral: \[ I = \int_{0}^{\ln(2)} t \, dt = \left[ \frac{t^2}{2} \right]_{0}^{\ln(2)} = \frac{(\ln(2))^2}{2} - \frac{0^2}{2} = \frac{(\ln(2))^2}{2}. \] ### Final Result Thus, the value of the integral is: \[ I = \frac{(\ln(2))^2}{2}. \] ---
Promotional Banner

Topper's Solved these Questions

  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6. 5 (Simplification of Integrals Based on the Properties of Symmetry of Integrands)|14 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 6 (Integration by Parts. Reduction Formulas)|22 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6.3 (Estimating an Integral. The Definite Integral as a Function of Its Limits)|17 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos
IA MARON-THE DEFINITE INTEGRAL -6 . 4 (Changing the Variable in a Definite Integral)
  1. Compute the integrals (a) int(1)^(sqrt(3)) (sqrt(1 + x^(2)))/(x^(2)...

    Text Solution

    |

  2. The value of the integralunderset(0)overset(pi)int (x sin x)/(1+cos^(2...

    Text Solution

    |

  3. Evaluate the integral I = int(0)^(1) (I n (1 + x))/( 1 + x) dx

    Text Solution

    |

  4. Prove that for any given integral with finite limits a and b one can...

    Text Solution

    |

  5. Evaluate int(-4)^(-5)e^((x+5^(2))) dx+3int(1//3)^(2//3)e^(9(x-(2)/(3))...

    Text Solution

    |

  6. Prove that the integral int(0)^(pi) (sin 2 k x)/(sin x) dx equal...

    Text Solution

    |

  7. Compute the integral int(1//2)^(sqrt(3//2)) (dx)/(x sqrt(1 - x^(2)))

    Text Solution

    |

  8. Prove that the function L(x) defined on the interval (0,infty) by the ...

    Text Solution

    |

  9. Transform the integral int(0)^(3) (x-2)^(2) dx by the substitution (x...

    Text Solution

    |

  10. Compute the integrals I = int(0)^(1)(dx)/(1 + sqrt(x))

    Text Solution

    |

  11. Compute the integrals I = int(0)^(5) (dx)/( 2 x + sqrt(3 x + 1))

    Text Solution

    |

  12. Compute the integrals I = int(pi//4)^(pi//3) (dx)/( 1 - sin x)

    Text Solution

    |

  13. Compute the integrals I = int(0)^(1) sqrt(2 x - x^(2)) dx

    Text Solution

    |

  14. Compute the integrals I = int(0)^(pi//4) (sin x + cos x)/( 3 + si...

    Text Solution

    |

  15. Compute the integrals I = int(0)^(a) x^(2) sqrt((a - x)/( a + x))...

    Text Solution

    |

  16. Compute the integrals I = int(0)^(2a) sqrt(2 a x - x^(2)) dx

    Text Solution

    |

  17. Compute the integrals I = int(-1)^(1) (dx)/(1 + x^(2))

    Text Solution

    |

  18. Applying a suitable change of the variable, find the following defini...

    Text Solution

    |

  19. Consider the integral int(-2)^(2) (dx)/(4 + x^(2)) . It is easy to co...

    Text Solution

    |

  20. Consider the integral I = int(0)^(2pi) (dx)/( 5 - 2 cos x) . Making th...

    Text Solution

    |