Home
Class 12
MATHS
Prove that the integral int(0)^(pi) (...

Prove that the integral
`int_(0)^(pi) (sin 2 k x)/(sin x) dx`
equals zero if k an integer.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that the integral \[ I = \int_{0}^{\pi} \frac{\sin(2kx)}{\sin(x)} \, dx \] equals zero when \( k \) is an integer, we can use the property of definite integrals and the symmetry of the sine function. ### Step 1: Change of Variable We will use the substitution \( x = \pi - t \). Then, \( dx = -dt \). The limits change as follows: - When \( x = 0 \), \( t = \pi \) - When \( x = \pi \), \( t = 0 \) Thus, we can rewrite the integral as: \[ I = \int_{\pi}^{0} \frac{\sin(2k(\pi - t))}{\sin(\pi - t)} (-dt) = \int_{0}^{\pi} \frac{\sin(2k(\pi - t))}{\sin(t)} dt \] ### Step 2: Simplifying the Integral Using the sine function properties, we know that: \[ \sin(2k(\pi - t)) = \sin(2k\pi - 2kt) = -\sin(2kt) \] and \[ \sin(\pi - t) = \sin(t) \] Thus, we can rewrite the integral: \[ I = \int_{0}^{\pi} \frac{-\sin(2kt)}{\sin(t)} dt = -\int_{0}^{\pi} \frac{\sin(2kt)}{\sin(t)} dt = -I \] ### Step 3: Adding the Two Expressions Now we have: \[ I = -I \] Adding \( I \) to both sides gives: \[ 2I = 0 \] ### Step 4: Conclusion Thus, we find that: \[ I = 0 \] This proves that: \[ \int_{0}^{\pi} \frac{\sin(2kx)}{\sin(x)} \, dx = 0 \] for any integer \( k \).
Promotional Banner

Topper's Solved these Questions

  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6. 5 (Simplification of Integrals Based on the Properties of Symmetry of Integrands)|14 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 6 (Integration by Parts. Reduction Formulas)|22 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6.3 (Estimating an Integral. The Definite Integral as a Function of Its Limits)|17 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos
IA MARON-THE DEFINITE INTEGRAL -6 . 4 (Changing the Variable in a Definite Integral)
  1. Prove that for any given integral with finite limits a and b one can...

    Text Solution

    |

  2. Evaluate int(-4)^(-5)e^((x+5^(2))) dx+3int(1//3)^(2//3)e^(9(x-(2)/(3))...

    Text Solution

    |

  3. Prove that the integral int(0)^(pi) (sin 2 k x)/(sin x) dx equal...

    Text Solution

    |

  4. Compute the integral int(1//2)^(sqrt(3//2)) (dx)/(x sqrt(1 - x^(2)))

    Text Solution

    |

  5. Prove that the function L(x) defined on the interval (0,infty) by the ...

    Text Solution

    |

  6. Transform the integral int(0)^(3) (x-2)^(2) dx by the substitution (x...

    Text Solution

    |

  7. Compute the integrals I = int(0)^(1)(dx)/(1 + sqrt(x))

    Text Solution

    |

  8. Compute the integrals I = int(0)^(5) (dx)/( 2 x + sqrt(3 x + 1))

    Text Solution

    |

  9. Compute the integrals I = int(pi//4)^(pi//3) (dx)/( 1 - sin x)

    Text Solution

    |

  10. Compute the integrals I = int(0)^(1) sqrt(2 x - x^(2)) dx

    Text Solution

    |

  11. Compute the integrals I = int(0)^(pi//4) (sin x + cos x)/( 3 + si...

    Text Solution

    |

  12. Compute the integrals I = int(0)^(a) x^(2) sqrt((a - x)/( a + x))...

    Text Solution

    |

  13. Compute the integrals I = int(0)^(2a) sqrt(2 a x - x^(2)) dx

    Text Solution

    |

  14. Compute the integrals I = int(-1)^(1) (dx)/(1 + x^(2))

    Text Solution

    |

  15. Applying a suitable change of the variable, find the following defini...

    Text Solution

    |

  16. Consider the integral int(-2)^(2) (dx)/(4 + x^(2)) . It is easy to co...

    Text Solution

    |

  17. Consider the integral I = int(0)^(2pi) (dx)/( 5 - 2 cos x) . Making th...

    Text Solution

    |

  18. Make sure that a formal change of the variable t = x^((2)/(5)) leads ...

    Text Solution

    |

  19. Is is possible to make the substitution x = sec t in the integral I = ...

    Text Solution

    |

  20. Given the integral int(0)^(1) sqrt(1 - x^(2)) dx. Made the substitut...

    Text Solution

    |